

DETERMINATION OF CALIFORNIA BEARING RATIO - BS 1377 : Part 4 : 1990

Project :	Cork Line Level Crossings	Job No:	19-135
Client :	OCB Geotechnical	Lab Ref No:	ST 93384
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Tested:	13/04/2020
	Co Cork	Date Reported:	21/04/2020
Order No: 2003-104		Sample Ref:	XC215-TP03 Type B Sample 5
Originator : Ian Holley		Location:	0.5-1.0m

Moisture content : %	20.4	Mean	CBR value : % 0.6
Penetration (mm)	Force (kN)	Standard Force (kN)	Bottom CBR (%)
2.5	0.05	13.2	0.4
5.0	0.11	20.0	0.5
Moisture content : %	20.4	Mean	CBR value : % 0.5

Moisture content determined in accordance with BS 1377 : Part 2 : 1990 - oven drying method CBR determined in accordance with BS 1377 : Part 4 : 1990

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services Ltd

Phil Thorp, Laboratory Manager

James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

BRE Test Suite B - Greenfield Site

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93381
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Reported:	08/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	07/04/2020
Originator:	lan Holley	Specification:	Client
Sample Detail	s XC215-TP	03 Туре В	
Supplier:	Client Info	Date of Sampling:	Client Info.
Source:	Client Info	Sampled By:	Client
Sample Locati	on: 0.25-0.50m	Sampling Reason:	Request

Parameter	RESULT
рН	7
Sulphate Aqueous Extract (SO4) (mg/l)	16
Sulphur as S, Total (%)	0.02
Sulphate as SO4, Total (%)	0.04

Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full. Tested in accordance with the above specifications Subcontracted to a laboratory UKAS accredited for this testing

SL

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD.

□ James Ward, Operations Manager

MOISTURE CONTENT BS 1377 : Part 2 : 1990 Oven Drying Method cl 3.2

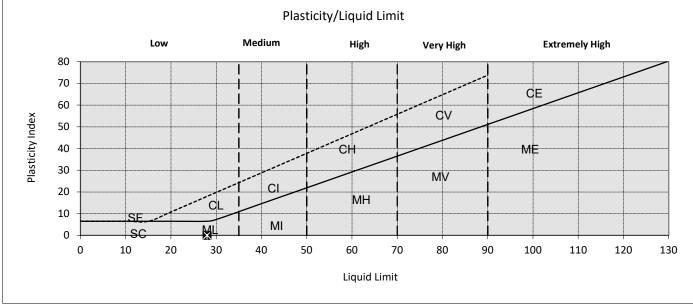
Site:	Cork Line Lev	vel Crossings		Job No.:	19-135
Client:	OCB Geotechnical		Lab Ref No.:	ST 93379	
	Unit 1 Carrig	ogna		Date Received	l: 09/03/2020
	Midleton			Date Tested:	26/03/2020
Order No:	2003-104			Date Reporte	d: 03/04/2020
Originator:	lan Holley			Specification:	Client
Sampled Ref:		XC215-TP03	Type D		
Sample Type:		Bulk	Location:		XC215-TP03 Type D
Date Sampled:		Client Info	Sample by:		Client
Depth:		0.25-0.5m	Material Typ	e:	Soil

Moisture Content (%):

Tested in accordance with BS 1377: Part 2: 1990 Sample preperation by cone and quarter

35

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.


Approved Signature James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.:	Cork Line Level Crossings	Job No.:	19-135			
Client:	OCB Geotechnical	Lab Ref No.:	ST 93380			
	Unit 1 Carrigogna	Sample Ref.:	XC215-TP03 0.25-0.5m Type B			
	Midleton	Date Sampled:	Client Info			
	Co Cork	Date Received:	09/03/2020			
Order No:	2003-104	Date Tested:	28/03/2020			
Originator:	lan Holley	Date Reported:	21/04/2020			
Sampling Certific	cate	No				
Sampled By		Client				
Sample Type		Bulk				
Sample Preparat	ion Method	Washed				
MATERIAL		Soil				
Retained 425 mi	cron (%)	23				
Natural Moisture	e Content (%)	28				
Liquid Limit (sing	(le point)(%)	28				
Plastic Limit (%)		Non-Plastic				
Plasticity Index		N/A				

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager

James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561 Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

RS70 Issue 2

MOISTURE CONTENT BS 1377 : Part 2 : 1990 Oven Drying Method cl 3.2

Site:	Cork Line Lev	el Crossings		Job No.:	19	9-135
Client:	OCB Geotechnical		Lab Ref No.:	ST	93388	
	Unit 1 Carrig	ogna		Date Receive	d: 09/03	3/2020
	Midleton			Date Tested:	26/03	3/2020
Order No:	2003-104			Date Report	d: 02/04	/2020
Originator:	lan Holley			Specification	C	ient
Sampled Ref:		XC215-TP04	Type D Sample	2 3		
Sample Type:		Bulk	Location:		XC215-TP04 Type D	Sample 3
Date Sampled:		Client Info	Sample by:		Client	
Depth:		0.3-0.7m	Material Typ	pe:	Soil	

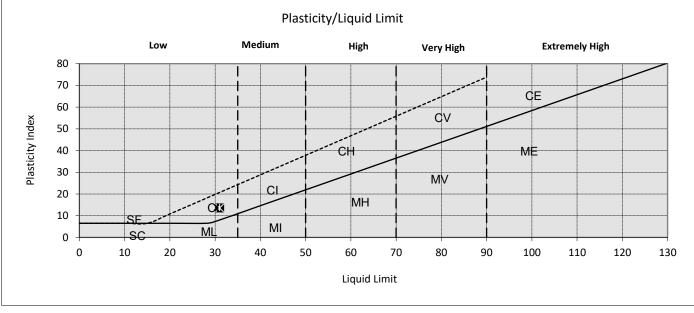
Moisture Content (%):

Tested in accordance with BS 1377: Part 2: 1990 Sample preperation by cone and quarter

22

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager



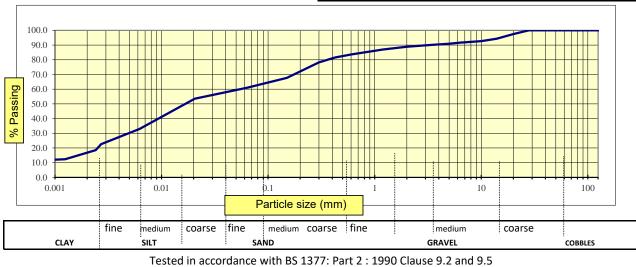
James Fisher Testing Services Ltd Ruby House, 40A Hardwick Grange Warrington, WA1 4RF Tel: 01925286880

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.: Client:	Cork Line Level Crossings OCB Geotechnical Unit 1 Carrigogna Midleton Co Cork	Job No.: Lab Ref No.: Sample Ref.: Date Sampled: Date Received:	19-135 ST 93389 XC215-TP04 0.3-0.7m Type D Sample 3 Client Info 09/03/2020		
Order No: Originator:	2003-104 Ian Holley	Date Tested: Date Reported:	26/03/2020 31/03/2020		
Sampling Certific	ate	Νο			
Sampled By		Client			
Sample Type		Bulk			
Sample Preparat	ion Method	Washed			
MATERIAL		Soil			
Retained 425 mid	cron (%)	20			
Natural Moisture Content (%)		21			
Liquid Limit (single point)(%)		31			
Plastic Limit (%)	-	17			
Plasticity Index		14			

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager


James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990 Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5								
Project:	Cork Lin	e Level Crossings	Job No:	Job No:				
Client:	OCB Geo	otechnical	Lab Ref No.:		ST 93387			
Gilenti		arrigogna	Date Received:		09/03/2020			
	Midleto							
	Midleto	n	Date Reported:		02/04/2020			
			Date Tested:		31/03/2020			
Order No:	2003-10	4	Material:		Soil			
Originator:	Ian Holle	2у	Visual Description		Light Clay			
Client Ref.		VC215 TD01 Ture D Semale 2	BS Sieve	%	Specification			
Client Ker.		XC215-TP04 Type B Sample 2	Size	Passing				
			300 mm	100				
			125 mm	100				
Location:		XC215-TP04 Type B Sample 2	100 mm	100				
Location.			75 mm	100				
			63 mm	100				
Supplier:		Bulk	50 mm 37.5 mm	100 100				
••			28 mm	100				
Source:		Client Info.	28 mm	97				
			14 mm	94				
Depth (m):		0.3-0.7m	10 mm	93				
Compliant De			6.3 mm	92				
Sampling Re	ason:	Client Request	5 mm	91				
Sampled By:		Client	3.35 mm	90				
Sampled by.		Client	2 mm	89				
Specification	n:	Client	1.18 mm	87				
			0.6 mm	84				
Preparation	Method:	Without Organics Preparation	0.425 mm 0.3 mm	82 78				
-			0.3 mm	68				
Notes:		Disturbed sample from cleanout	0.063 mm	61				
			0.020 mm	54				
			0.006 mm	33				
			0.003 mm	23				
			0.002 mm	19				

LABORATORY TEST REPORT

0.001 mm

12

The stated result only relates to the item/location tested, this report shall not be reproduced except in full. Sedimentation by Hydrometer - Not UKAS

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD. □ James Ward, Operations Manager

MOISTURE CONTENT BS 1377 : Part 2 : 1990 Oven Drying Method cl 3.2

Site:	Cork Line Lev	el Crossings		Job No.:	19-135
Client:		CB Geotechnical		Lab Ref No.:	
	Unit 1 Carrig	ogna		Date Receive	ed: 09/03/2020
	Midleton			Date Tested:	: 26/03/2020
Order No:	2003-104			Date Reporte	ed: 03/04/2020
Originator:	lan Holley			Specification	n: Client
Sampled Ref:		XC215-TP04	Type D Sample	2 6	
Sample Type:		Bulk	Location:		XC215-TP04 Type D Sample 6
Date Sampled:		Client Info	Sample by:		Client
Depth:		0.7-1.0m	Material Typ	be:	Soil

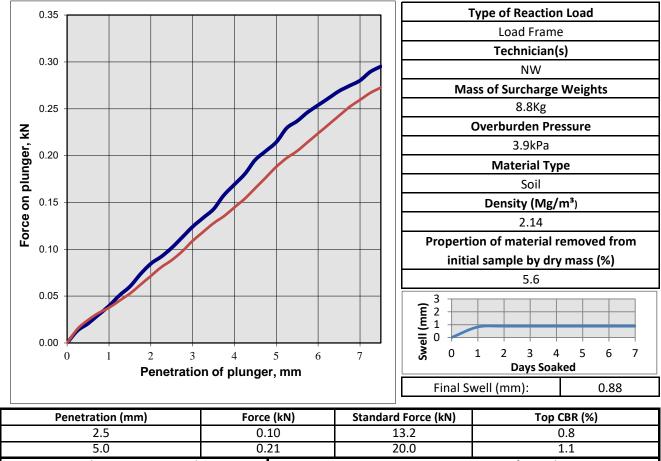
Moisture Content (%):

15

Tested in accordance with BS 1377: Part 2: 1990 Sample preperation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature


James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

DETERMINATION OF CALIFORNIA BEARING RATIO - BS 1377 : Part 4 : 1990

Project :	Cork Line Level Crossings	Job No:	19-135
Client :	OCB Geotechnical	Lab Ref No:	ST 93390
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Tested:	14/04/2020
	Co Cork	Date Reported:	22/04/2020
Order No:	2003-104	Sample Ref:	XC215-TP04 Type B Sample 5
Originator : Ian Holley		Location:	0.7-1.0m

5.0	0.21		20.0	1.1
Moisture content : %		Mean	CBR value : % 0.9	
Penetration (mm)	Force (kN)		Standard Force (kN)	Bottom CBR (%)
2.5	0.0	09	13.2	0.7
5.0	0.19		20.0	0.9
Moisture content : %		Mean	CBR value : % 0.8	

Moisture content determined in accordance with BS 1377 : Part 2 : 1990 - oven drying method CBR determined in accordance with BS 1377 : Part 4 : 1990

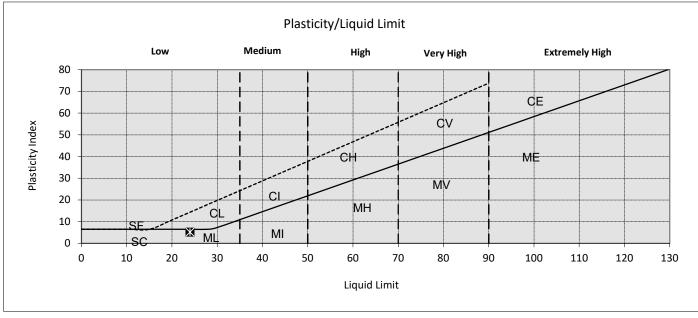
The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services Ltd

Phil Thorp, Laboratory Manager

James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

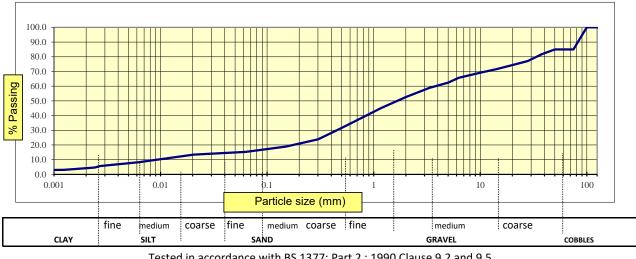

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.: Client: Order No:	Cork Line Level Crossings OCB Geotechnical Unit 1 Carrigogna Midleton Co Cork 2003-104	Job No.: Lab Ref No.: Sample Ref.: Date Sampled: Date Received: Date Tested:	19-135 ST 93392 XC215-TP04 0.7-1.0m Type D S.6 Client Info 09/03/2020 02/04/2020				
Originator:	lan Holley	Date Reported:	21/04/2020				
Sampling Certifica	ate	Νο					
Sampled By		Client	Client				
Sample Type		Bulk					
Sample Preparati	on Method	Washed					
MATERIAL		Soil					
Retained 425 mic	ron (%)	27	27				
Natural Moisture	Content (%)	18	18				
Liquid Limit (single point)(%)		24	24				
Plastic Limit (%)		19					
Plasticity Index		5					

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager


James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561 Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

RS70 Issue 2

Detern	nination	Determination of Particle Size of Particle Size Distribution (Hyd				
Project:	Cork Lin	e Level Crossings	Job No:	19-135		
Client:	OCB Geo	otechnical	Lab Ref No.:		ST 93393	
		arrigogna	Date Received:		09/03/2020	
	Midleto					
	ivitaleto	n	Date Reported:		02/04/2020	
			Date Tested:		31/03/2020	
Order No:	2003-10	4	Material:		Soil	
Originator:	Ian Holle	ey	Visual Description	Cobl	bly, Dark Sandy Clay	
Client Ref.		VC215 TD04 Turne D Semale C	BS Sieve	%	Specification	
Client Ref.		XC215-TP04 Type B Sample 6	Size	Passing		
			300 mm	100		
			125 mm	100		
Location:	XC215-TP04 Type B Sample 6	100 mm	100			
		75 mm	85			
		63 mm	85			
Supplier:		Bulk	50 mm 37.5 mm	85 82		
Source:		Client Info.	28 mm	77		
			20 mm	74		
Depth (m):		1.0-1.5m	14 mm	71		
			10 mm	69		
Sampling Reason:		Client Dequest	6.3 mm	66		
Sampling Re	ason:	Client Request	5 mm	62		
Sampled By:		Client	3.35 mm	59		
Sampica by.		elient	2 mm	53		
Specification	า:	Client	1.18 mm	45		
			0.6 mm	34		
Preparation	Method:	Without Organics Preparation	0.425 mm 0.3 mm	29 24		
			0.15 mm	19		
Notes:		Disturbed sample from cleanout	0.063 mm	15		
			0.020 mm	13		
			0.006 mm	8		
			0.003 mm	6		
			0.002 mm	5		

LABORATORY TEST REPORT

0.001 mm

Tested in accordance with BS 1377: Part 2 : 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full. Sedimentation by Hydrometer - Not UKAS

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD. □ James Ward, Operations Manager

MOISTURE CONTENT BS 1377 : Part 2 : 1990 Oven Drying Method cl 3.2

Site:	Cork Line Lev	el Crossings		Job No.:	19-135
Client:	OCB Geotechnical			Lab Ref No.:	ST 93395
	Unit 1 Carrig	ogna		Date Receive	ed: 09/03/2020
	Midleton			Date Tested:	26/03/2020
Order No:	2003-104			Date Reporte	ed: 03/04/2020
Originator:	lan Holley			Specification	n: Client
Sampled Ref:		XC215-TP05	Type D Sample	e 4	
Sample Type:		Bulk	Location:		XC215-TP05 Type D Sample 4
Date Sampled:		Client Info	Sample by:		Client
Depth:		0.5-1.0m	Material Typ	be:	Soil

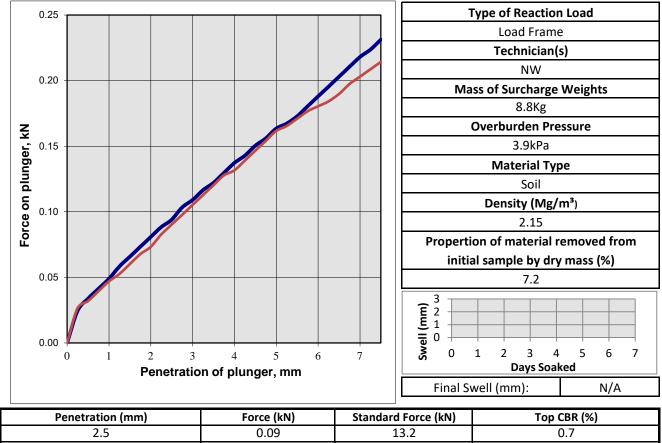
Moisture Content (%):

18

Tested in accordance with BS 1377: Part 2: 1990 Sample preperation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature


James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

DETERMINATION OF CALIFORNIA BEARING RATIO - BS 1377 : Part 4 : 1990

Project :	Cork Line Level Crossings	Job No:	19-135
Client :	OCB Geotechnical	Lab Ref No:	ST 93394
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Tested:	14/04/2020
	Co Cork	Date Reported:	21/04/2020
Order No:	2003-104	Sample Ref:	XC215-TP05 Type B Sample 3
Originator	: Ian Holley	Location:	0.5-1.0m

Penetration (mm)	FUICE (KIN)		Stanuaru Porce (KN)	тор сык (%)		
2.5	0.09		13.2	0.7		
5.0	0.	.16	20.0	0.8		
Moisture content : %	21.3		Mean	CBR value : % 0.8		
Penetration (mm)	Force (kN)		on (mm) Force (kN)		Standard Force (kN)	Bottom CBR (%)
2.5	0.	.09	13.2	0.7		
5.0	0.	.16	20.0	0.8		
Moisture content : %	21.3		Mean	CBR value : % 0.7		

Moisture content determined in accordance with BS 1377 : Part 2 : 1990 - oven drying method CBR determined in accordance with BS 1377 : Part 4 : 1990

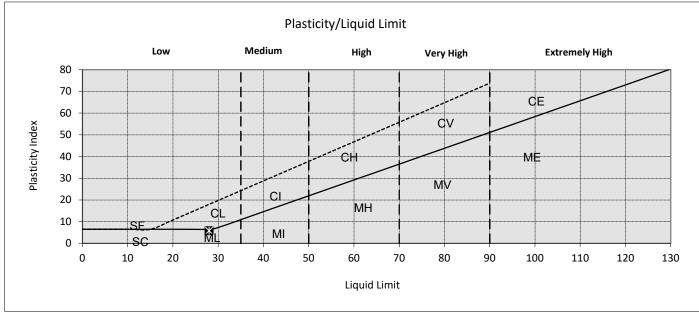
The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services Ltd

Phil Thorp, Laboratory Manager

James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561


Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.: Client: Order No: Originator:	Cork Line Level Crossings OCB Geotechnical Unit 1 Carrigogna Midleton Co Cork 2003-104 Ian Holley	Job No.: Lab Ref No.: Sample Ref.: Date Sampled: Date Received: Date Tested: Date Reported:	19-135 ST 93396 XC215-TP05 0.5-1.0m Type D S.4 Client Info 09/03/2020 06/04/2020 22/04/2020				
onginator.	lan noncy	Dute Reporteu.	22/04/2020				
Sampling Certifica	ate	No					
Sampled By		Client					
Sample Type		Bulk					
Sample Preparati	on Method	Washed					
MATERIAL		Soil					
Retained 425 mic	ron (%)	25	25				
Natural Moisture	Natural Moisture Content (%)		20				
Liquid Limit (singl	e point)(%)	28	28				
Plastic Limit (%)		22	22				
Plasticity Index		6	6				

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager

James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561 Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

RS70 Issue 2

MOISTURE CONTENT BS 1377 : Part 2 : 1990 Oven Drying Method cl 3.2

Site:	Cork Line Lev	el Crossings		Job No.:	19-135
Client:	OCB Geotechnical			Lab Ref No.:	ST 93398
	Unit 1 Carrig	ogna		Date Receive	d: 09/03/2020
	Midleton			Date Tested:	26/03/2020
Order No:	2003-104			Date Reporte	ed: 02/04/2020
Originator:	lan Holley			Specification	: Client
Sampled Ref:		XC215-TP05	Type D Sample	2 7	
Sample Type:		Bulk	Location:		XC215-TP05 Type D Sample 7
Date Sampled:		Client Info	Sample by:		Client
Depth:		1.1-1.6m	Material Typ	be:	Soil

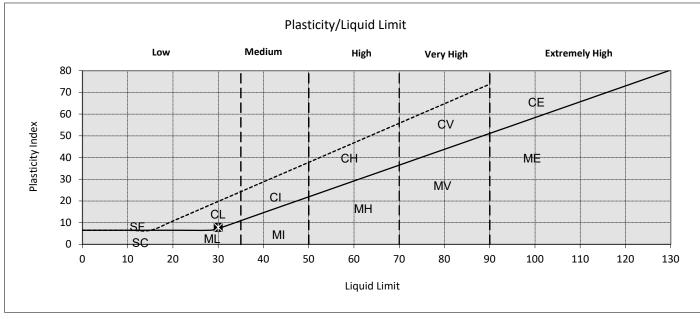
Moisture Content (%):

16

Tested in accordance with BS 1377: Part 2: 1990 Sample preperation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature


James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.: Client:	Cork Line Level Crossings OCB Geotechnical Unit 1 Carrigogna Midleton Co Cork	Job No.: Lab Ref No.: Sample Ref.: Date Sampled: Date Received:	19-135 ST 93399 XC215-TP05 1.1-1.6m Type D S.7 Client Info 09/03/2020			
Order No: Originator:	2003-104 Ian Holley	Date Tested: Date Reported:	06/04/2020 22/04/2020			
Sampling Certific	ate	No				
Sampled By Sample Type		Client Bulk				
Sample Preparati	ion Method	Washed				
MATERIAL		Soil				
Retained 425 mid	cron (%)	27				
Natural Moisture	Natural Moisture Content (%)		18			
Liquid Limit (sing	le point)(%)	30				
Plastic Limit (%)		22				
Plasticity Index		8				

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager

James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561 Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

RS70 Issue 2

Detern	Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990 Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5						
Project:	Project: Cork Line Level Crossings		Job No:	19-135			
Client:	Client: OCB Geotechnical		Lab Ref No.:		ST 93397		
		arrigogna	Date Received:		09/03/2020		
	Midleto		Date Reported:		02/04/2020		
	iviluleto	11	•				
			Date Tested:		31/03/2020		
Order No:	2003-10	94	Material:		Soil		
Originator:	Ian Holle	ey	Visual Description	Grey/I	Brown Clay, Fine Sand		
Client Ref.		VC21E TROE Type B Sample 6	BS Sieve	%	Specification		
Client Ref.		XC215-TP05 Type B Sample 6	Size	Passing			
			300 mm	100			
			125 mm	100			
Location:	XC215-TP05 Type B Sample 6	100 mm	100				
2000000			75 mm	100			
			63 mm 50 mm	100			
Supplier:		Bulk	37.5 mm	100			
			28 mm	100			
Source:		Client Info.	20 mm	98			
Donth (m)		1 1 1 6	14 mm	98			
Depth (m):		1.1-1.6m	10 mm	97			
Sampling Re	ason.	Client Request	6.3 mm	96			
Sumpling he		ellenenequest	5 mm	96			
Sampled By:		Client	3.35 mm 2 mm	94 93			
. ,			1.18 mm	93			
Specification	n:	Client	0.6 mm	90			
Duananatian Mathada		With aut Organiza Dranastica	0.425 mm	88			
Preparation Method:		Without Organics Preparation	0.3 mm	85			
Notes:		Disturbed sample from cleanout	0.15 mm	77			
Notes.		Disturbed sample from cleanout	0.063 mm	63			
			0.020 mm	56			
			0.006 mm	34			
			0.003 mm	24			
			0.002 mm	19			

LABORATORY TEST REPORT

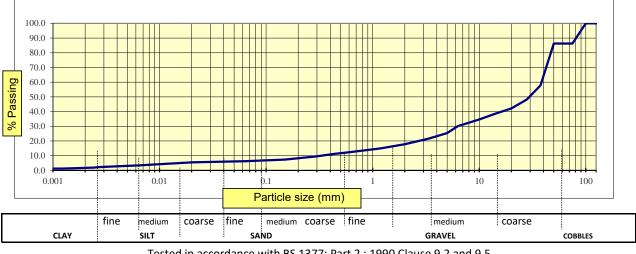
0.001 mm

13

Tested in accordance with BS 1377: Part 2 : 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS



Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD. ☐ James Ward, Operations Manager

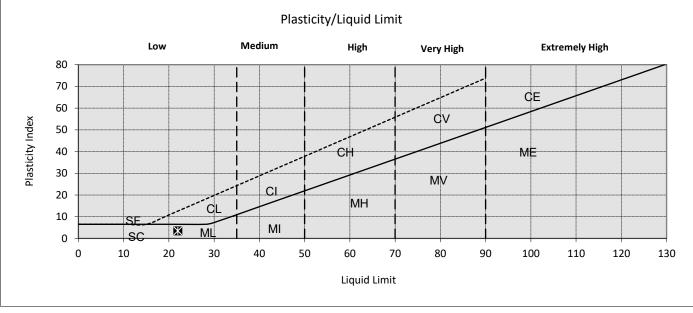
Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990 Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5						
Project:	Cork Line	e Level Crossings	Job No:	19-135		
Client:	OCB Geo	otechnical	Lab Ref No.:		ST 93400	
		arrigogna	Date Received:		09/03/2020	
		00				
	Midletor	1	Date Reported:		02/04/2020	
			Date Tested:		01/04/2020	
Order No:	2003-10	4	Material:		Soil	
Originator:	Ian Holle	2y	Visual Description	C	obbly Clay, Sandy	
Client Ref.		VC215 TD05 Turne D Commis 0	BS Sieve	%	Specification	
Client Ref.		XC215-TP05 Type B Sample 8	Size	Passing		
			300 mm	100		
		XC215-TP05 Type B Sample 8	125 mm	100		
Location:			100 mm	100		
			75 mm	86		
			63 mm 50 mm	86 86		
Supplier:		Bulk	37.5 mm	58		
-		Client Info.	28 mm	48		
Source:			20 mm	42		
Depth (m):		1.7-2.2m	14 mm	38		
		1.7-2.2111	10 mm	35		
Sampling Reason:		Client Request	6.3 mm	30		
oumping near		eneme nequest	5 mm	25		
Sampled By:		Client	3.35 mm 2 mm	22 18		
			1.18 mm	18		
Specification:		Client	0.6 mm	12		
Dreverstien N	A a the a d.	Without Organias Dranaration	0.425 mm	11		
Preparation iv	vietnoa:	Without Organics Preparation	0.3 mm	10		
Notes:		Disturbed sample from cleanout	0.15 mm	7		
		Distance sumple from cleanout	0.063 mm	6		
			0.020 mm	5		
			0.006 mm 0.003 mm	3		
			0.003 mm	2		
			0.001 mm	1		

LABORATORY TEST REPORT

Tested in accordance with BS 1377: Part 2 : 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS


Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD. □ James Ward, Operations Manager

James Fisher Testing Services Ltd Ruby House, 40A Hardwick Grange Warrington, WA1 4RF Tel: 01925286880

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.: Client: Order No:	Cork Line Level Crossings OCB Geotechnical Unit 1 Carrigogna Midleton Co Cork 2003-104	Job No.: Lab Ref No.: Sample Ref.: Date Sampled: Date Received: Date Tested:	19-135 ST 93402 XC215-TP06 0.5-1.0m Type B Sample 3 Client Info 09/03/2020 26/03/2020				
Originator:	lan Holley	Date Reported:	31/03/2020				
Sampling Certific	ate	Νο	No				
Sampled By		Client					
Sample Type		Bulk					
Sample Preparat	ion Method	Washed	Washed				
MATERIAL		Soil	Soil				
Retained 425 mid	cron (%)	21	21				
Natural Moisture	Natural Moisture Content (%)		18				
Liquid Limit (single point)(%)		22	22				
Plastic Limit (%)	· · · ·	19	19				
Plasticity Index		3	3				

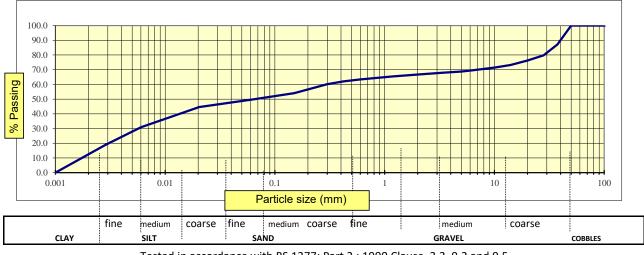
The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

SLQ

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager

James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR



LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

Moisture content to BS 1377: Part 2 : 1990 Oven Drying Method Cl 3.2							
Cork Lin	e Level Crossings	Job No:		19-135			
OCB Geo	otechnical	Lab Ref No.:		ST 93403			
Unit 1 C	arrigogna	Date Received:		09/03/2020			
	00			02/04/2020			
	11	•					
Co Cork		Date Tested:		01/04/2020			
2003-10	94	Material:		Soil			
Ian Holle	ey	Visual Description	Grey	/Brown Clay, Sandy			
		BS Sieve	%	Specification			
	XC215-TP06 Type B Sample 3		-				
		125 mm	U				
	XC215-TP06 Type B Sample 3	100 mm	100				
		90 mm	100				
		75 mm	100				
		63 mm	100				
	Client Info	50 mm	100				
	Client mio.	37.5 mm	87				
	Client Info						
	0 5-1 0m						
ason:	Client Request		-				
	Client						
		1.18 mm	65				
1:	Client	0.6 mm	63				
Mothody	Without Organics Proparation	0.425 mm	62				
method:	without Organics Freparation	0.3 mm	60				
	Disturbed sample from cleanout		-				
ntent%:	16						
		0.0000 11111	31				
	OCB Geo Unit 1 C Midleto Co Cork 2003-10 Ian Hollo Ian Hollo	Cork Line Level Crossings OCB Geotechnical Unit 1 Carrigogna Midleton Co Cork 2003-104 Ian Holley XC215-TP06 Type B Sample 3 XC215-TP06 Type B Sample 3 XC215-TP06 Type B Sample 3 Client Info. Client Info. Client Info. Client Info. Client Request Client Client Client Method: Vithout Organics Preparation Disturbed sample from cleanout	Cork Line Level CrossingsJob No:OCB GeotechnicalLab Ref No.:Unit 1 CarrigognaDate Received:MidletonDate Reported:Co CorkDate Tested:2003-104Material:Ian HolleyVisual DescriptionSize100 mmXC215-TP06 Type B Sample 3XC215-TP06 Type B Sample 3XC215-TP06 Type B Sample 3Client Info.Client Info.0.5-1.0m0.5-1.0m100 mm0.5-1.0m118 mmClientClientClientClientMethod:Without Organics PreparationDisturbed sample from cleanout0.053 mm0.15 mm0.15 mm0.15 mm0.15 mm0.15 mm0.15 mm0.66 mm0.66 mm0.66 mm0.66 mm0.66 mm0.66 mm0.66 mm0.75 mm0.75 mm0.75 mm1.18 mm1.18 mm0.66 mm0.66 mm0.66 mm0.75 mm<	Cork Line Level CrossingsJob No:OCB GeotechnicalLab Ref No.:Unit 1 CarrigognaDate Received:MidletonDate Reported:Co CorkDate Tested:2003-104Material:Ian HolleyVisual DescriptionXC215-TP06 Type B Sample 3SizeXC215-TP06 Type B Sample 390 mmXC215-TP06 Type B Sample 390 mmClient Info.75 mmClient Info.37.5 mmClient Info.37.5 mmClient Request6.3 mmClient Request6.3 mmClient6.3 mmClient100 mm10 mm7110 mm6.3 mm0.5-1.0m10 mm10 mm7110 mm6.3 mm0.5-1.0m1.18 mm0.5-1.0m6.3 mm10 mm7110 mm710.5-1.0m6.3 mm0.425 mm6.30.425 mm6.30.3 mm693.35 mm680.6 mm630.6 mm630.6 mm630.6 mm630.6 mm630.6 mm630.6 mm500.6 mm500.603 mm500.0205 mm45			

Tested in accordance with BS 1377: Part 2 : 1990 Clause 3.2, 9.2 and 9.5 Sedimentation by Hydrometer - Not UKAS

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

BRE Test Suite B - Greenfield Site

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93407
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Reported:	08/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	07/04/2020
Originator:	Ian Holley	Specification:	Client
Sample Detail	<u>s</u> XC215-TP06 Ту	pe B Sample 6	
Supplier:	Client Info	Date of Sampling:	Client Info.
Source:	Client Info	Sampled By:	Client
Sample Locati	i on: 1.5-2.0m	Sampling Reason:	Request

Parameter	RESULT
рН	8
Sulphate Aqueous Extract (SO4) (mg/l)	<10
Sulphur as S, Total (%)	<0.01
Sulphate as SO4, Total (%)	0.01

Comments:

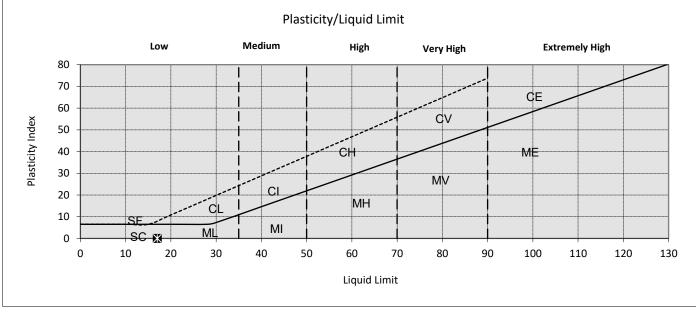
None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full. Tested in accordance with the above specifications Subcontracted to a laboratory UKAS accredited for this testing

SL

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD.

□ James Ward, Operations Manager



James Fisher Testing Services Ltd Ruby House, 40A Hardwick Grange Warrington, WA1 4RF Tel: 01925286880

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.: Client: Order No: Originator:	Cork Line Level Crossings OCB Geotechnical Unit 1 Carrigogna Midleton Co Cork 2003-104 Ian Holley	Job No.: Lab Ref No.: Sample Ref.: Date Sampled: Date Received: Date Tested: Date Reported:	19-135 ST 93405 XC215-TP06 1.5-2.0m Type B Sample 6 Client Info 09/03/2020 27/03/2020 02/04/2020	
Sampling Certific	ate	Νο		
Sampled By		Client		
Sample Type		Bulk		
Sample Preparat	ion Method	Washed		
MATERIAL		Soil		
Retained 425 mi	cron (%)	50		
Natural Moisture	Natural Moisture Content (%)			
Liquid Limit (single point)(%)		17		
Plastic Limit (%)		Non-Plastic		
Plasticity Index		N/A		

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

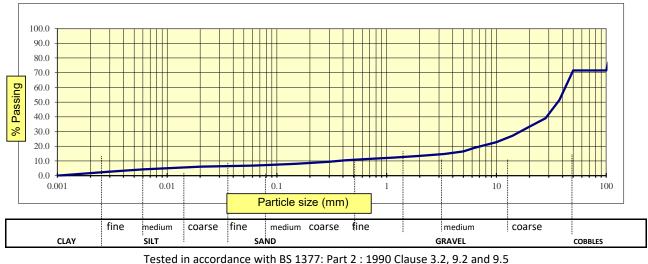
SLQ

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager

James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

RS70 Issue 2



LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

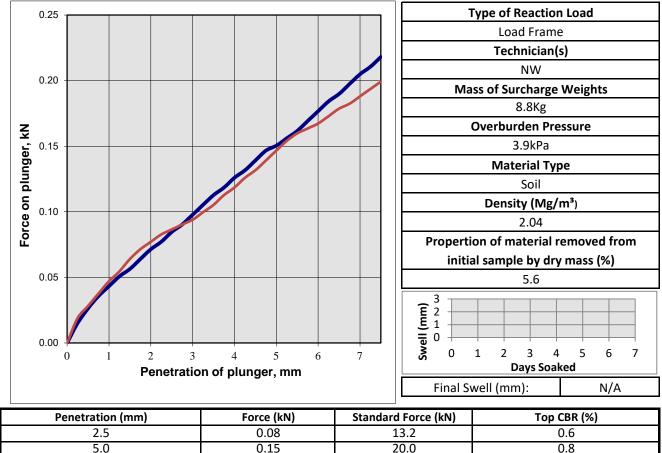
Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5 Moisture content to BS 1377: Part 2 : 1990 Oven Drving Method Cl 3 2

		Moisture content to BS 1377: Pa	art 2 : 1990 Oven Dryin	g Method Cl	3.2
Project:	Cork Lin	e Level Crossings	Job No:		19-135
Client:	OCB Geo	otechnical	Lab Ref No.:		ST 93406
	Unit 1 Ca	arrigogna	Date Received:		09/03/2020
	Midleto	n	Date Reported:		02/04/2020
			•		
	Co Cork		Date Tested:		31/03/2020
Order No:	2003-10)4	Material:		Soil
Originator:	Ian Holle	зу	Visual Description	Cobb	ly Dark Clay, Sandy
			BS Sieve	%	Specification
Client Ref.		XC215-TP06 Type B Sample 6	Size	Passing	
			125 mm	100	
		XC215-TP06 Type B Sample 6	100 mm	72	
Location:			90 mm	72	
			75 mm	72	
			63 mm	72	
Supplier:		Client Info.	50 mm	72	
Supplier.		cheft fino.	37.5 mm	51	
Source:		Client Info.	28 mm	39	
		chefte into.	20 mm	33	
Depth (m):		1.5-2.0m	14 mm 10 mm	27 23	
			6.3 mm	19	
Sampling Re	ason:	Client Request	5 mm	16	
			3.35 mm	15	
Sampled By:		Client	2 mm	13	
Specification	••	Client	1.18 mm	12	
Specification:		Cilent	0.6 mm	11	
Preparation	Preparation Method: Without Organics F		0.425 mm	10	
-		5	0.3 mm 0.15 mm	9 8	
Notes:		Disturbed sample from cleanout	0.063 mm	8 7	
Moisture Co	ntont%.	6	0.0205 mm	6	
initiature CO	IIICIII/0.	0	0.0060 mm	4	
			0.0029 mm	3	

Sedimentation by Hydrometer - Not UKAS

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature


JAMES FISHER TESTING SERVICES (IRELAND) LTD.

DETERMINATION OF CALIFORNIA BEARING RATIO - BS 1377 : Part 4 : 1990

Project :	Cork Line Level Crossings	Job No:	19-135
Client :	OCB Geotechnical	Lab Ref No:	ST 93408
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Tested:	13/04/2020
	Co Cork	Date Reported:	22/04/2020
Order No:	2003-104	Sample Ref:	XC215-TP07 Type B Sample 2
Originator : Ian Holley		Location:	0.4-0.8m

2.5	0.08		13.2	0.6	
5.0	0.15		20.0	0.8	
Moisture content : %	Moisture content : % 24.3		Mean	CBR value : % 0.7	
Penetration (mm)	Force (kN)		Standard Force (kN)	Bottom CBR (%)	
2.5	0.	.09	13.2	0.7	
5.0	0.15		20.0	0.7	
Moisture content : %	24.3		Mean CBR value : % 0.7		

Moisture content determined in accordance with BS 1377 : Part 2 : 1990 - oven drying method CBR determined in accordance with BS 1377 : Part 4 : 1990

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services Ltd

Phil Thorp, Laboratory Manager

James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

MOISTURE CONTENT BS 1377 : Part 2 : 1990 Oven Drying Method cl 3.2

Site:	Cork Line Lev	el Crossings		Job No.:	19-135
Client:	OCB Geotechnical		Lab Ref No.:	ST 93409	
	Unit 1 Carrig	ogna		Date Receive	ed: 09/03/2020
	Midleton			Date Tested:	: 26/03/2020
Order No:	2003-104			Date Reporte	ed: 02/04/2020
Originator:	lan Holley			Specification	n: Client
Sampled Ref:		XC215-TP07	Type D Sample	2 3	
Sample Type:		Bulk	Location:		XC215-TP07 Type D Sample 3
Date Sampled:		Client Info	Sample by:		Client
Depth:		0.4-0.8m	Material Typ	be:	Soil

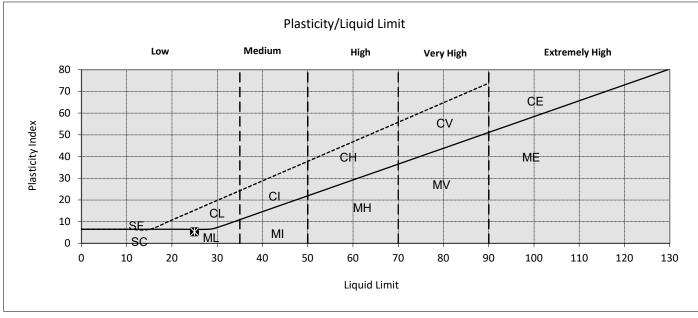
Moisture Content (%):

28

Tested in accordance with BS 1377: Part 2: 1990 Sample preperation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature


James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.: Client:	Cork Line Level Crossings OCB Geotechnical Unit 1 Carrigogna Midleton Co Cork	Job No.: Lab Ref No.: Sample Ref.: Date Sampled: Date Received:	19-135 ST 93410 XC215-TP07 0.4-0.8m Type D S.3 Client Info 09/03/2020
Order No: Originator:	2003-104 Ian Holley	Date Tested: Date Reported:	06/04/2020 22/04/2020
Sampling Certifica	ate	No	
Sampled By		Client	
Sample Type		Bulk	
Sample Preparati	on Method	Washed	
MATERIAL		Soil	
Retained 425 mic	ron (%)	23	
Natural Moisture	Content (%)	17	
Liquid Limit (single point)(%)		25	
Plastic Limit (%)		20	
Plasticity Index		5	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager

James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561 Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

RS70 Issue 2

MOISTURE CONTENT BS 1377 : Part 2 : 1990 Oven Drying Method cl 3.2

Site:	Cork Line Lev	el Crossings		Job No.:	19-1	35
Client:	OCB Geotech	OCB Geotechnical		Lab Ref No.:	ST 93	412
	Unit 1 Carrig	ogna		Date Receive	d: 09/03/2	.020
	Midleton			Date Tested:	27/03/2	.020
Order No:	2003-104			Date Reporte	d: 02/04/2	020
Originator:	lan Holley			Specification	Clier	nt
Sampled Ref:		XC215-TP07	Type D Sample	6		
Sample Type:		Bulk	Location:		XC215-TP07 Type D Sa	mple 6
Date Sampled:		Client Info	Sample by:		Client	
Depth:		0.9-1.4m	Material Typ	e:	Soil	

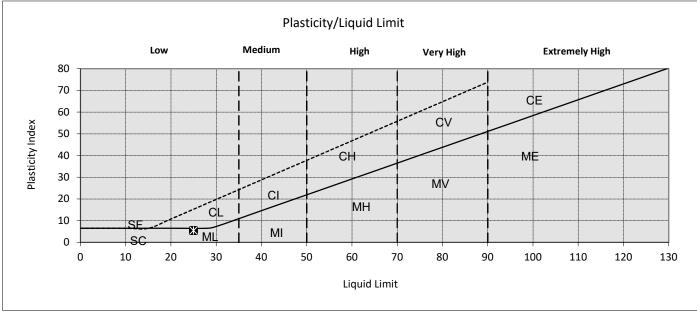
Moisture Content (%):

20

Tested in accordance with BS 1377: Part 2: 1990 Sample preperation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

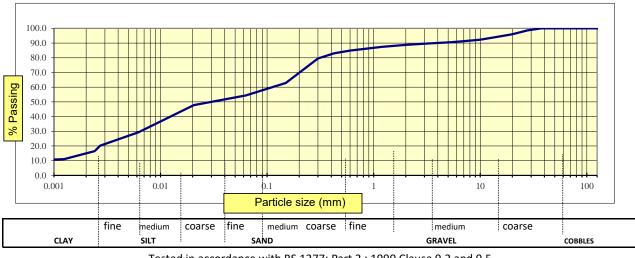

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.: Client:	Cork Line Level Crossings OCB Geotechnical Unit 1 Carrigogna Midleton Co Cork	Job No.: Lab Ref No.: Sample Ref.: Date Sampled: Date Received:	19-135 ST 93413 XC215-TP07 0.9-1.4m Type D S.6 Client Info 09/03/2020
Order No: Originator:	2003-104 Ian Holley	Date Tested: Date Reported:	01/04/2020 22/04/2020
Sampling Certifica	ate	No Client	
Sample Type		Bulk	
Sample Preparation	on Method	Washed Soil	
	Retained 425 micron (%) Natural Moisture Content (%)		
Liquid Limit (singl		25	
Plastic Limit (%) Plasticity Index		19 5	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager


James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561 Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

RS70 Issue 2

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990 Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5						
Project:	Cork Lin	e Level Crossings	Job No:	19-135		
Client:	OCB Geo	otechnical	Lab Ref No.:		ST 93411	
-		arrigogna	Date Received:		09/03/2020	
	Midleto	00	Date Reported:		02/04/2020	
	whateto		•			
			Date Tested:		01/04/2020	
Order No:	2003-10	4	Material:		Soil	
Originator:	Ian Holle	2y	Visual Description	Ligh	nt Clay, Fine, Sandy	
Client Def		VC215 TD07 Turo B Sampla F	BS Sieve	%	Specification	
Client Ref.		XC215-TP07 Type B Sample 5	Size	Passing		
			300 mm	100		
			125 mm	100		
Location:		XC215-TP07 Type B Sample 5	100 mm	100		
20000000			75 mm	100		
Supplier:		Bulk	63 mm 50 mm	100 100		
			37.5 mm	100		
			28 mm	99		
Source:		Client Info.	20 mm	96		
Donth (m)		0014m	14 mm	94		
Depth (m):		0.9-1.4m	10 mm	92		
Sampling Rea	ason:	Client Request	6.3 mm	91		
ounping ne			5 mm	90		
Sampled By:		Client	3.35 mm 2 mm	90 89		
			1.18 mm	83		
Specification	n:	Client	0.6 mm	85		
Dronouotion Mathedu		Without Organics Preparation	0.425 mm	83		
Preparation	methou.	without Organics Preparation	0.3 mm	80		
Notes:		Disturbed sample from cleanout	0.15 mm	63		
			0.063 mm	54		
			0.020 mm 0.006 mm	48 29		
			0.008 mm	29		
			0.003 mm	17		
			0.002 11111	17		

LABORATORY TEST REPORT

0.001 mm

11

Tested in accordance with BS 1377: Part 2 : 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD.

BRE Test Suite B - Greenfield Site

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93415
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Reported:	08/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	07/04/2020
Originator:	Ian Holley	Specification:	Client
Sample Detail	s ХС215-ТР07 Ту	pe D Sample 9	
Supplier:	Client Info	Date of Sampling:	Client Info.
Source:	Client Info	Sampled By:	Client
Sample Locati	i on: 1.6-2.1m	Sampling Reason:	Request

Parameter	RESULT
рН	7.2
Sulphate Aqueous Extract (SO4) (mg/l)	51
Sulphur as S, Total (%)	0.01
Sulphate as SO4, Total (%)	0.02

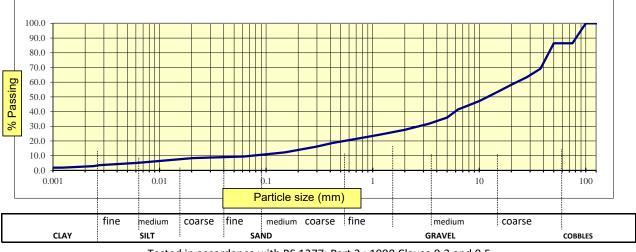
Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full. Tested in accordance with the above specifications Subcontracted to a laboratory UKAS accredited for this testing

SL

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD.


□ James Ward, Operations Manager

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990 Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5						
Project:	Cork Line Level Crossings		Job No:	19-135		
Client:	OCB Geo	otechnical	Lab Ref No.:		ST 93414	
•••••		arrigogna	Date Received:	09/03/2020		
	Midleto		Date Reported:		02/04/2020	
	Minieto	1	•			
			Date Tested:		01/04/2020	
Order No:	2003-10	4	Material:		Soil	
Originator:	Ian Holle	ey	Visual Description	Cobl	ole, Dark Clay, Sandy	
Client Ref.			BS Sieve	%	Specification	
Client Ref.		XC215-TP07 Type B Sample 8	Size	Passing		
			300 mm	100		
			125 mm	100		
Location:		XC215-TP07 Type B Sample 8	100 mm	100		
			75 mm 63 mm	86		
			50 mm	86 86		
Supplier:		Bulk	37.5 mm	69		
			28 mm	63		
Source:		Client Info.	20 mm	58		
Depth (m):		1.6-2.1m	14 mm	52		
Deptil (iii).			10 mm	47		
Sampling Rea	ason:	Client Request	6.3 mm	41 36		
		·	5 mm 3.35 mm	36		
Sampled By:		Client	2 mm	28		
Specification:		Client	1.18 mm	24		
			0.6 mm	21		
Preparation Method:		Without Organics Preparation	0.425 mm	19		
reputation	incentou.	Without organies reputation	0.3 mm	16		
Notes:		Disturbed sample from cleanout	0.15 mm 0.063 mm	12 9		
		·	0.003 mm	8		
			0.020 mm	5		
			0.003 mm	4	<u> </u>	
			0.002 mm	3		

LABORATORY TEST REPORT

0.001 mm

Tested in accordance with BS 1377: Part 2 : 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD. ☐ James Ward, Operations Manager

MOISTURE CONTENT BS 1377 : Part 2 : 1990 Oven Drying Method cl 3.2

Site:	Cork Line Lev	el Crossings		Job No.:	19-135
Client:	OCB Geotech	nnical		Lab Ref No.:	ST 93417
	Unit 1 Carrig	ogna		Date Receive	ed: 09/03/2020
	Midleton			Date Tested:	26/03/2020
Order No:	2003-104			Date Reporte	ed: 03/04/2020
Originator:	lan Holley			Specification	n: Client
Sampled Ref:		XC215-TP08	Type D Sample	4	
Sample Type:		Bulk	Location:		XC215-TP08 Type D Sample 4
Date Sampled:		Client Info	Sample by:		Client
Depth:		0.5-1.0m	Material Typ	e:	Soil

Moisture Content (%):

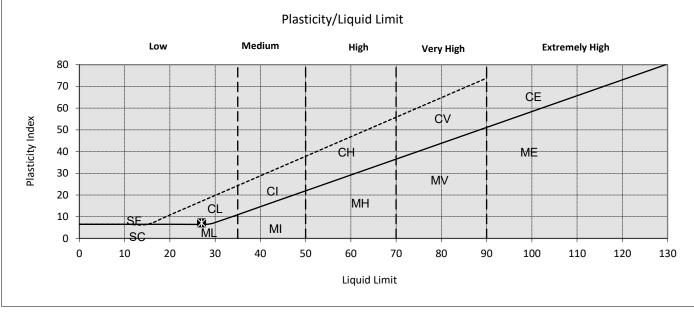
18

Tested in accordance with BS 1377: Part 2: 1990 Sample preperation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager



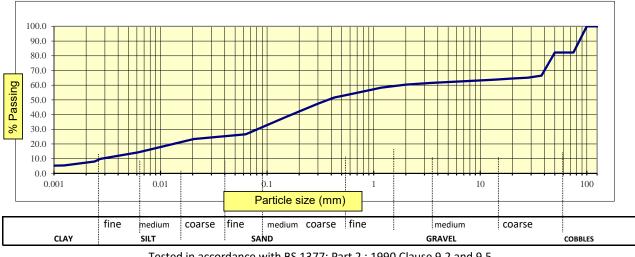
James Fisher Testing Services Ltd Ruby House, 40A Hardwick Grange Warrington, WA1 4RF Tel: 01925286880

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.: Client:	Cork Line Level Crossings OCB Geotechnical Unit 1 Carrigogna Midleton Co Cork	Job No.: Lab Ref No.: Sample Ref.: Date Sampled: Date Received:	19-135 ST 93418 XC215-TP08 0.5-1.0m Type D Sample 4 Client Info 09/03/2020			
Order No: Originator:	2003-104 Ian Holley	Date Tested: Date Reported:	26/03/2020 31/03/2020			
Sampling Certific	ate	Νο				
Sampled By		Client	Client			
Sample Type		Bulk	Bulk			
Sample Preparation Method		Washed	Washed			
MATERIAL		Soil	Soil			
Retained 425 micron (%)		20	20			
Natural Moisture Content (%)		26	26			
Liquid Limit (single point)(%)		27	27			
Plastic Limit (%)		20	20			
Plasticity Index		7				

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager


James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

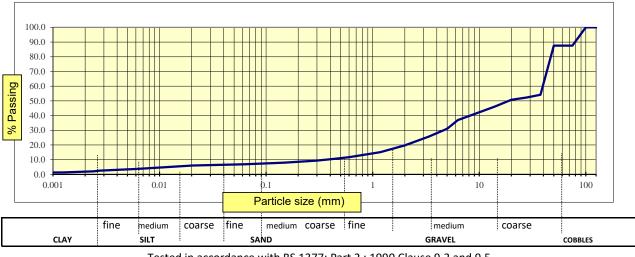
Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990 Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5						
Project:	Cork Line Level Crossings		Job No:	19-135		
Client:	OCB Geo	otechnical	Lab Ref No.:		ST 93416	
Chenti		arrigogna	Date Received:	09/03/2020		
	Midleto	n	Date Reported:		02/04/2020	
			Date Tested:		31/03/2020	
Order No:	2003-10	94	Material:		Soil	
Originator:	Ian Holle	гу	Visual Description	Cobble	e, Dark Clay, Fine Sand	
Client Ref.		VC245 TD09 Tune D Semula 2	BS Sieve	%	Specification	
Client Kei.		XC215-TP08 Type B Sample 3	Size	Passing		
			300 mm	100		
			125 mm	100		
Location:		XC215-TP08 Type B Sample 3	100 mm	100		
Location			75 mm	82		
			63 mm	82		
Supplier:		Bulk	50 mm 37.5 mm	82 66		
		28 mm	65			
Source:		Client Info.	20 mm	64		
			14 mm	64		
Depth (m):		0.5-1.0m	10 mm	63	1	
Compling Descent		Client De muest	6.3 mm	62		
Sampling Re	ason:	Client Request	5 mm	62		
Sampled By:		Client	3.35 mm	61		
Sampled by.	•	Client	2 mm	60		
Specification	า:	Client	1.18 mm	58		
		Cheffe	0.6 mm	54		
Preparation	Method:	Without Organics Preparation	0.425 mm 0.3 mm	52 47		
		- .	0.3 mm 0.15 mm	38		
Notes:		Disturbed sample from cleanout	0.063 mm	27		
			0.020 mm	23		
			0.006 mm	14		
			0.003 mm	10		
			0.002 mm	8		
			0.004	-		

LABORATORY TEST REPORT

0.001 mm

Tested in accordance with BS 1377: Part 2 : 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full. Sedimentation by Hydrometer - Not UKAS


Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD. □ James Ward, Operations Manager

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990 Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5					
Project:	Cork Line Level Crossings		Job No:	19-135	
Client:	OCB Geo	otechnical	Lab Ref No.:	ST 93419	
Chenth		arrigogna	Date Received:		09/03/2020
		00			
	Midleto	n	Date Reported:		02/04/2020
			Date Tested:		01/04/2020
Order No:	2003-10	4	Material:		Soil
Originator:	Ian Holle	2y	Visual Description	C	obbly Clay, Sandy
Client Ref.			BS Sieve	%	Specification
Client Ref.		XC215-TP08 Type B Sample 6	Size	Passing	
			300 mm	100	
			125 mm	100	
Location:		XC215-TP08 Type B Sample 6	100 mm	100	
			75 mm	88	
			63 mm 50 mm	88 88	
Supplier:		Bulk	37.5 mm	54	
-		Client Info.	28 mm	52	
Source:			20 mm	51	
Depth (m):		1.4-1.8m	14 mm	46	
Deptil (III).		1.4-1.0111	10 mm	42	
Sampling Rea	ison:	Client Request	6.3 mm	37	
Sumpling neuson.		enerit nequest	5 mm	31	
Sampled By:		Client	3.35 mm 2 mm	26 20	
Specification:		Client	1.18 mm	15	
			0.6 mm	13	
Duonouotion Mathedu			0.425 mm	10	
Preparation	vietnoa:	Without Organics Preparation	0.3 mm	9	
Notes:		Disturbed sample from cleanout	0.15 mm	8	
		Distarbed sumple from cleanout	0.063 mm	7	
			0.020 mm	6	
			0.006 mm 0.003 mm	4	
			0.003 mm	2	
			0.002 mm	1	

LABORATORY TEST REPORT

Tested in accordance with BS 1377: Part 2 : 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD. □ James Ward, Operations Manager

2

BRE Test Suite B - Greenfield Site

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93425
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Reported:	08/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	07/04/2020
Originator:	Ian Holley	Specification:	Client
Sample Detail	<u>s</u> XC215-TP09 Ту	pe D Sample 6	
Supplier:	Client Info	Date of Sampling:	Client Info.
Source:	Client Info	Sampled By:	Client
Sample Locati	on: 0.6-1.1m	Sampling Reason:	Request

Parameter	RESULT
рН	7.6
Sulphate Aqueous Extract (SO4) (mg/l)	<10
Sulphur as S, Total (%)	<0.01
Sulphate as SO4, Total (%)	0.02

Comments:

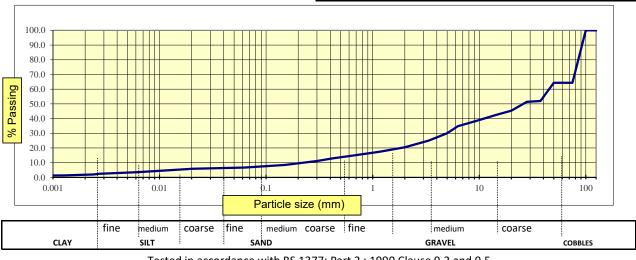
None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full. Tested in accordance with the above specifications Subcontracted to a laboratory UKAS accredited for this testing

SL

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD.

□ James Ward, Operations Manager



James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois Tel: 057 8664885

Determ	ination o	Determination of Particle Size I of Particle Size Distribution (Hydr			
Project:	Cork Line	e Level Crossings	Job No:		19-135
Client:	OCB Geo	otechnical	Lab Ref No.:		ST 93424
		arrigogna	Date Received:		09/03/2020
		00			
	Midleto	n	Date Reported:	02/04/2020	
			Date Tested:		31/03/2020
Order No:	2003-10	4	Material:		Soil
Originator:	Ian Holle	2у	Visual Description	(Cobbly Dark Clay
Client Ref.		VC215 TD00 Tune B Semale 5	BS Sieve	%	Specification
Client Ref.		XC215-TP09 Type B Sample 5	Size	Passing	
			300 mm	100	
			125 mm	100	
Location:		XC215-TP09 Type B Sample 5	100 mm	100	
			75 mm	64	
			63 mm 50 mm	64 64	
Supplier:		Bulk	37.5 mm	52	
-		Client Infe	28 mm	51	
Source:		Client Info.	20 mm	45	
Depth (m):		0.6-1.1m	14 mm	42	
Deptil (III).		0.0-1.111	10 mm	39	
Sampling Rea	ison:	Client Request	6.3 mm	35	
oumping nee		enerit nequest	5 mm	30	
Sampled By:		Client	3.35 mm 2 mm	25 21	
			1.18 mm	18	
Specification	:	Client	0.6 mm	14	
Dreverstien	Mathadi	Without Organize Drenaration	0.425 mm	13	
Preparation	vietnoa:	Without Organics Preparation	0.3 mm	11	
Notes:		Disturbed sample from cleanout	0.15 mm	8	
		Distarbed sumple from cleanout	0.063 mm	7	
			0.020 mm	6	
			0.006 mm 0.003 mm	4	
			0.003 mm	2	
			0.002 mm	1	

LABORATORY TEST REPORT

Tested in accordance with BS 1377: Part 2 : 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD. □ James Ward, Operations Manager

2

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377 : Part 2 : 1990 Oven Drying Method cl 3.2

Site:	Cork Line Lev	vel Crossings		Job No.:	19-135		
Client:	OCB Geotech	nnical		Lab Ref No.:	ST 93421		
	Unit 1 Carrig	ogna		Date Receive	ed: 09/03/2020		
	Midleton			Date Tested:	: 27/03/2020		
Order No:	2003-104			Date Reporte	ed: 02/04/2020		
Originator:	lan Holley			Specification	n: Client		
Sampled Ref:		XC215-TP09	Type D Sample	2 3			
Sample Type:		Bulk	Location:		XC215-TP09 Type D Sample 3		
Date Sampled:		Client Info	Sample by:		Client		
Depth:		0.35-0.60m	Material Typ	oe:	Soil		

Moisture Content (%):

14

Tested in accordance with BS 1377: Part 2: 1990 Sample preperation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

Page 1 of 1

LABORATORY TEST REPORT

To determine the Organic Content of Soil in accordance with BS 1377

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93423
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Reported:	08/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	07/04/2020
Originator:	Ian Holley	Specification:	Client

Supplier:	Client Info	Date of Sampling:	Client Info
Source:	Client Info	Sampled By:	Client
Sample Location:	0.35-0.60m	Sampling Reason:	Request

Result:

Organic Matter (%) 6.2

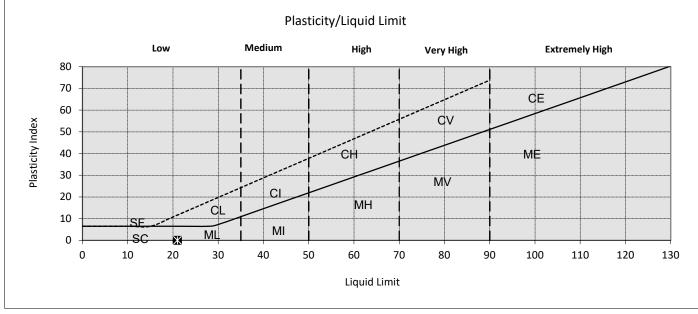
Comments:

None

Tested in accordance with the above specifications Subcontracted to a laboratory UKAS accredited for this testing

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD. James Ward, Operations Manager



 \bigcirc

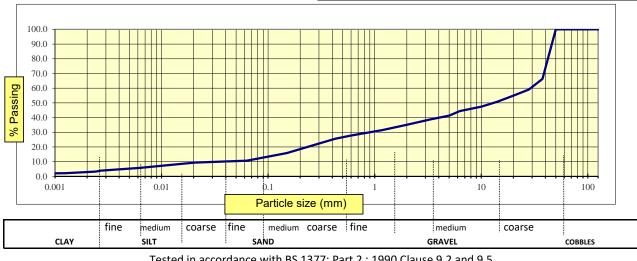
LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.:	Cork Line Level Crossings	Job No.:	19-135					
Client:	OCB Geotechnical	Lab Ref No.:	ST 93422					
	Unit 1 Carrigogna	Sample Ref.:	XC215-TP09 0.35-0.6m Type D S.3					
	Midleton	Date Sampled:	Client Info					
	Co Cork	Date Received:	09/03/2020					
Order No:	2003-104	Date Tested:	07/04/2020					
Originator:	lan Holley	Date Reported:	22/04/2020					
Sampling Certific	cate	No						
Sampled By		Client						
Sample Type		Bulk						
Sample Preparat	ion Method	Washed						
MATERIAL		Soil						
Retained 425 mi	cron (%)	21						
Natural Moisture	e Content (%)	18						
Liquid Limit (sing	gle point)(%)	21						
Plastic Limit (%)		Non-Plastic						
Plasticity Index		N/A						

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager

James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561 Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR


RS70 Issue 2

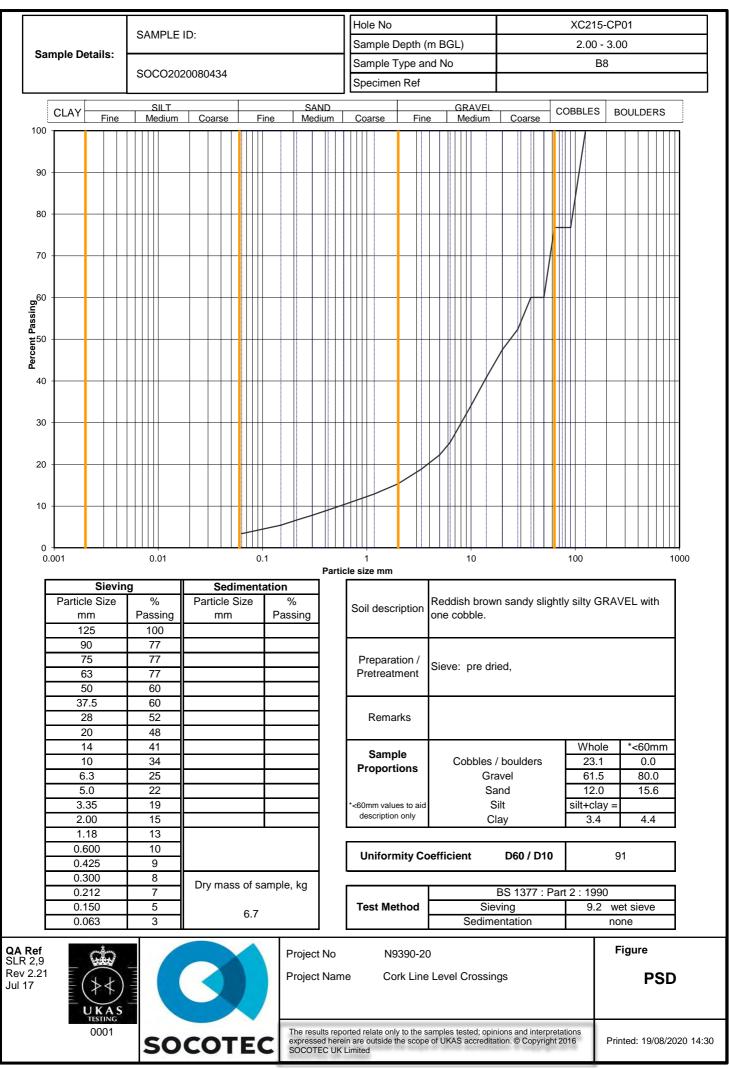
James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois Tel: 057 8664885

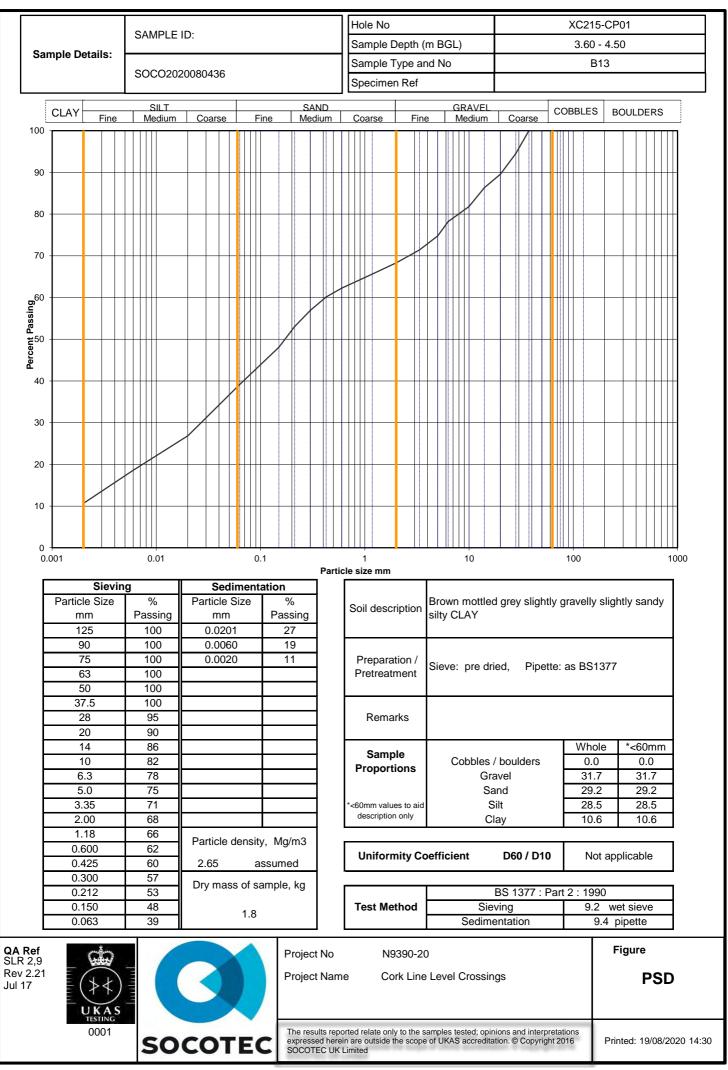
Detern	nination	Determination of Particle Size of Particle Size Distribution (Hyd			
Project:	Cork Lin	e Level Crossings	Job No:		19-135
Client:	OCB Geo	otechnical	Lab Ref No.:		ST 93420
		arrigogna	Date Received:	09/03/2020	
	Midleto	n	Date Reported:		02/04/2020
			Date Tested:		31/03/2020
Order No:	2003-10)4	Material:		Soil
Originator:	Ian Holle	еу	Visual Description	Cobb	le, Dark Clay, Sandy
Client Ref.			BS Sieve	%	Specification
Client Ref.		XC215-TP09 Type B Sample 2	Size	Passing	
			300 mm	100	
			125 mm	100	
Location:		XC215-TP09 Type B Sample 2	100 mm	100	
Location		Xezis nos type b sumple z	75 mm	100	
			63 mm	100 100	
Supplier:		Bulk	50 mm 37.5 mm	66	
			28 mm	59	
Source:		Client Info.	20 mm	55	
-			14 mm	51	
Depth (m):		0.35-0.6m	10 mm	47	
Sampling Re	2500.	Client Request	6.3 mm	44	
Sampling Ke	asun.	client Request	5 mm	41	
Sampled By:		Client	3.35 mm	39	
			2 mm	35	
Specification	า:	Client	1.18 mm 0.6 mm	31 28	
			0.425 mm	28	
Preparation	Method:	Without Organics Preparation	0.425 mm	20	
Notes:		Disturbed comple from electronic	0.15 mm	16	
NOLES:		Disturbed sample from cleanout	0.063 mm	11	
			0.020 mm	9	
			0.006 mm	6	
			0.003 mm	4	
			0.002 mm	3	

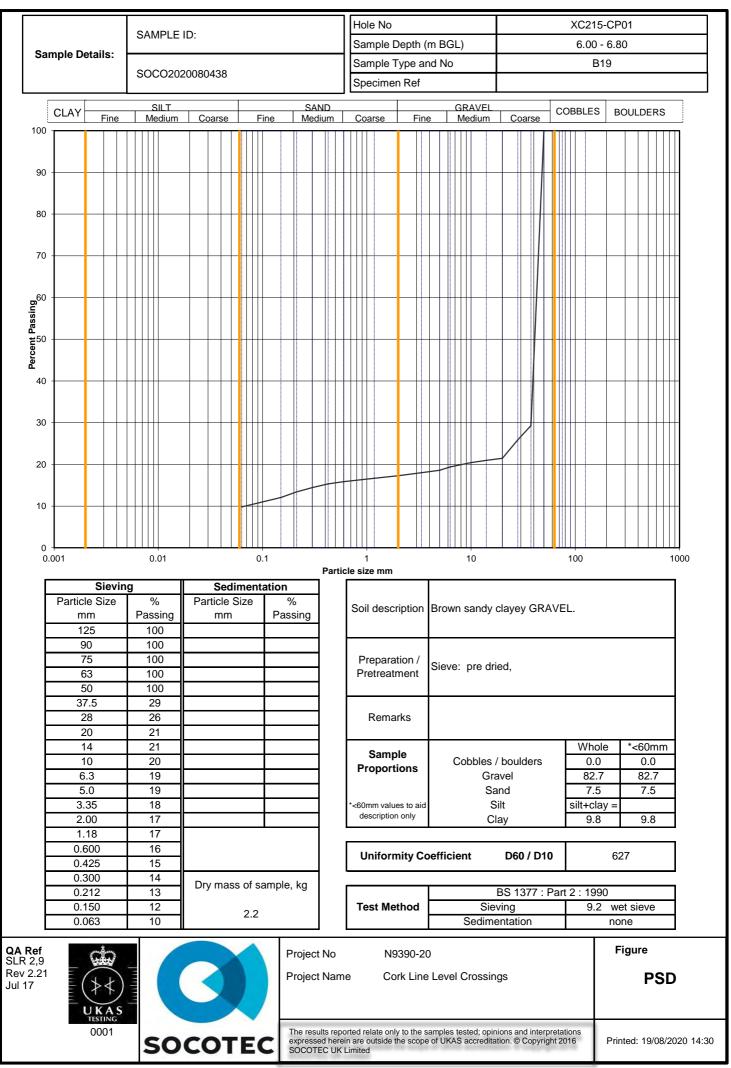
LABORATORY TEST REPORT

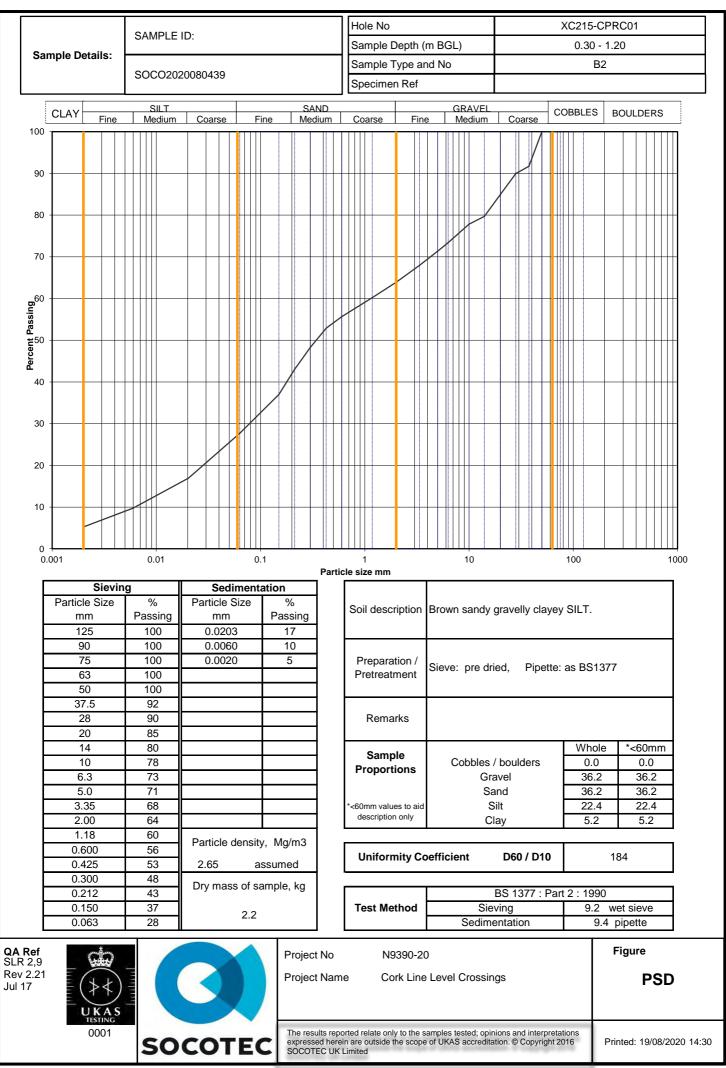
0.001 mm

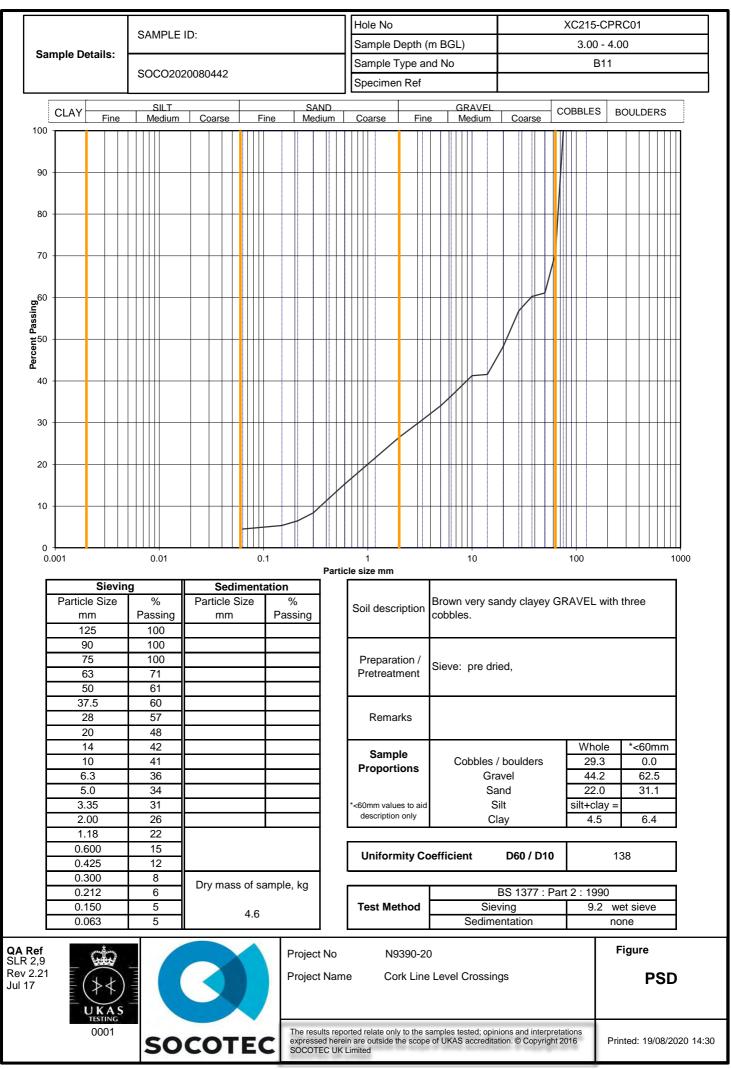
Tested in accordance with BS 1377: Part 2 : 1990 Clause 9.2 and 9.5

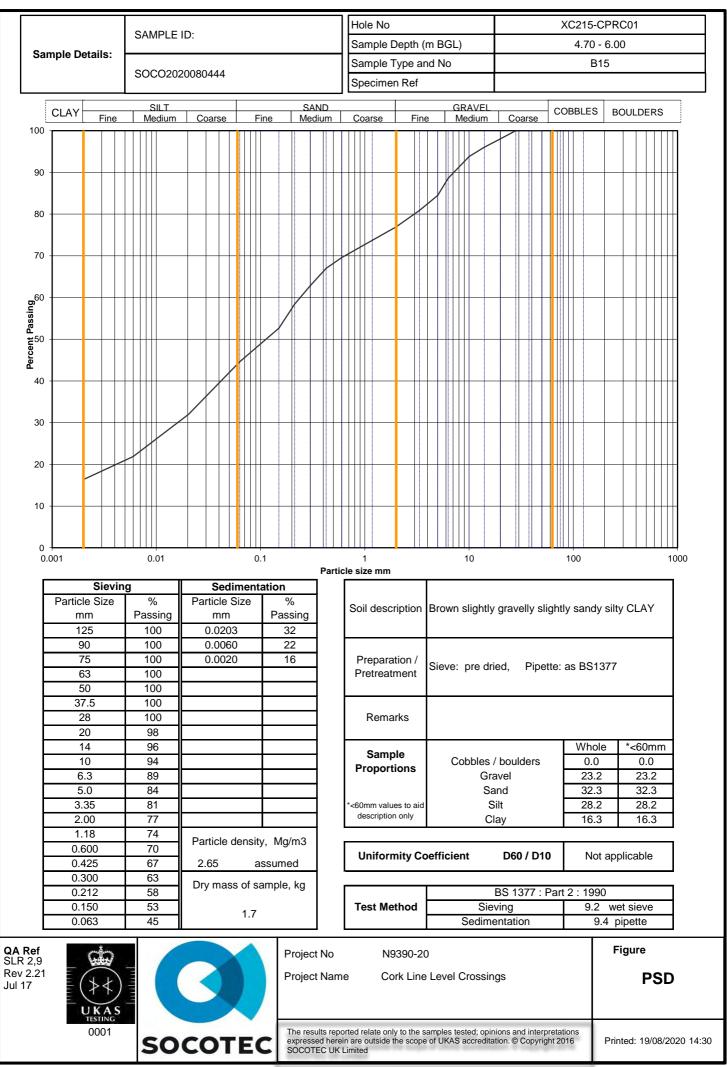

The stated result only relates to the item/location tested, this report shall not be reproduced except in full. Sedimentation by Hydrometer - Not UKAS

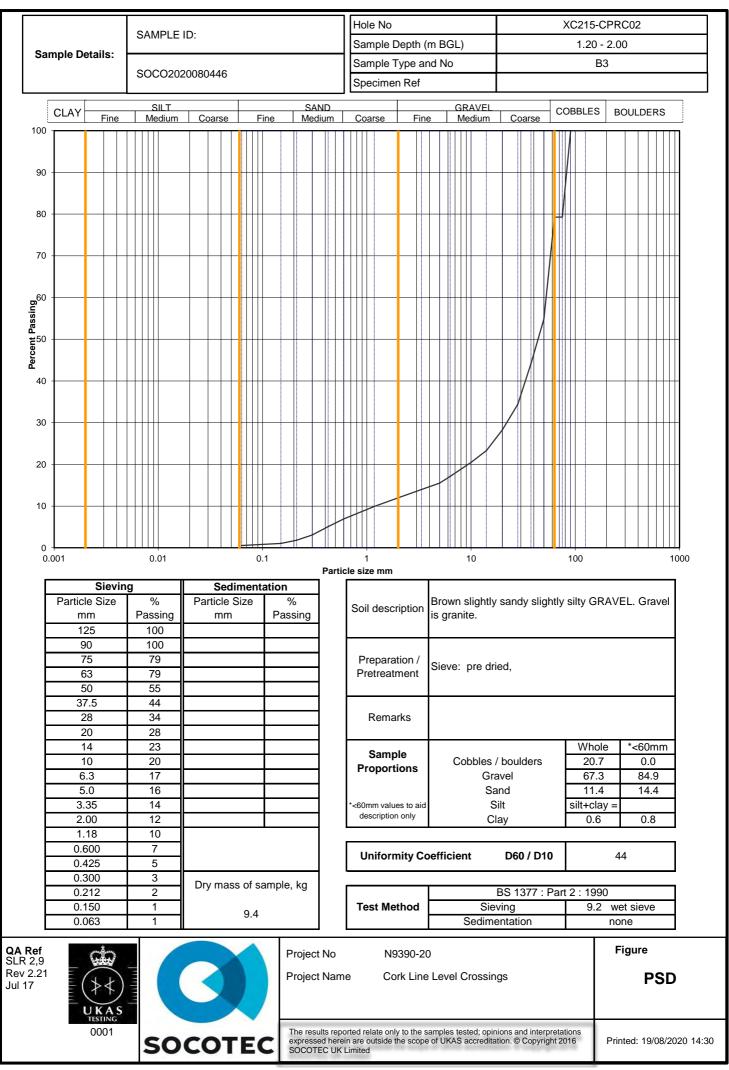

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD. □ James Ward, Operations Manager

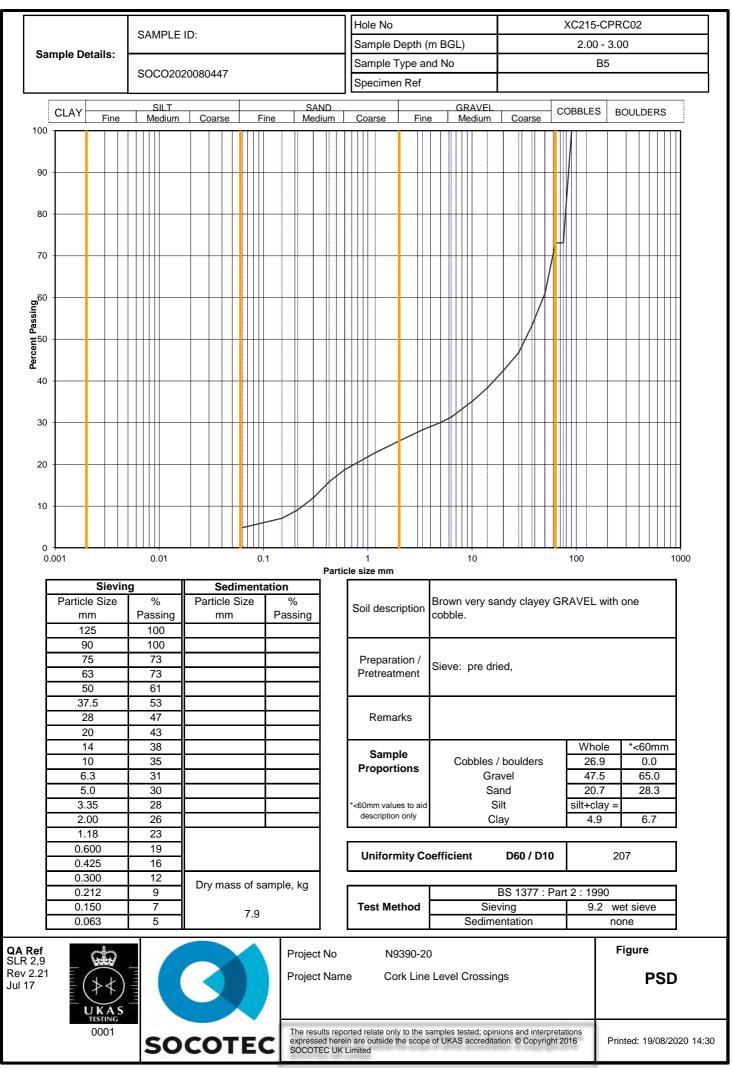


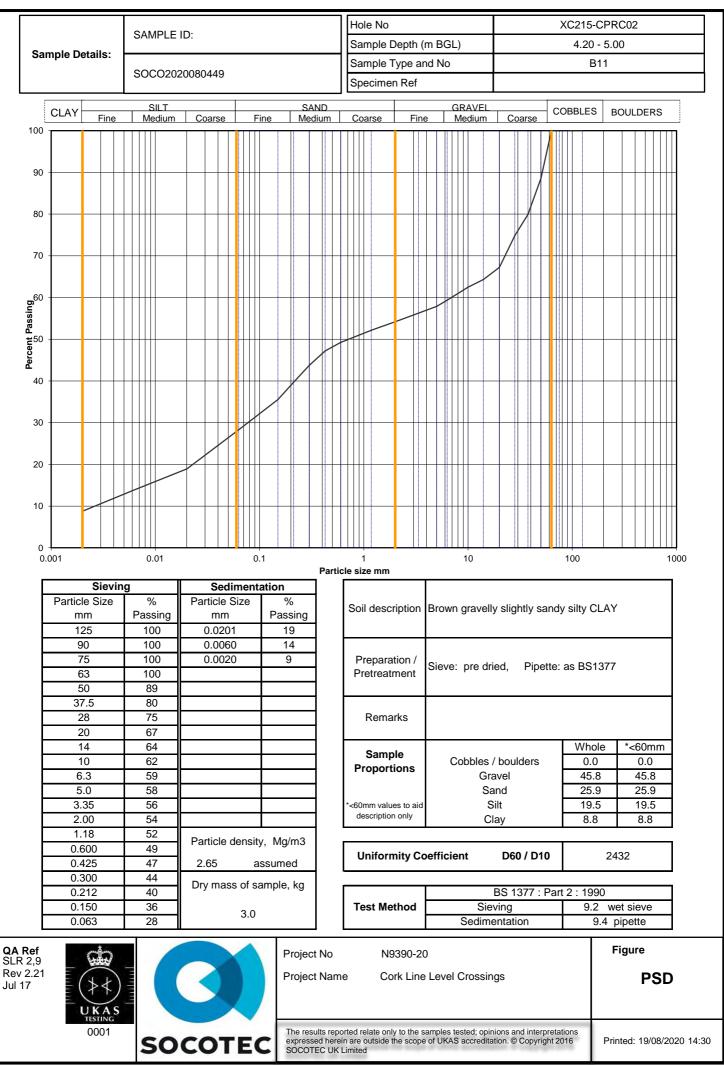

INDEX PROPERTIES - SUMMARY OF RESULTS

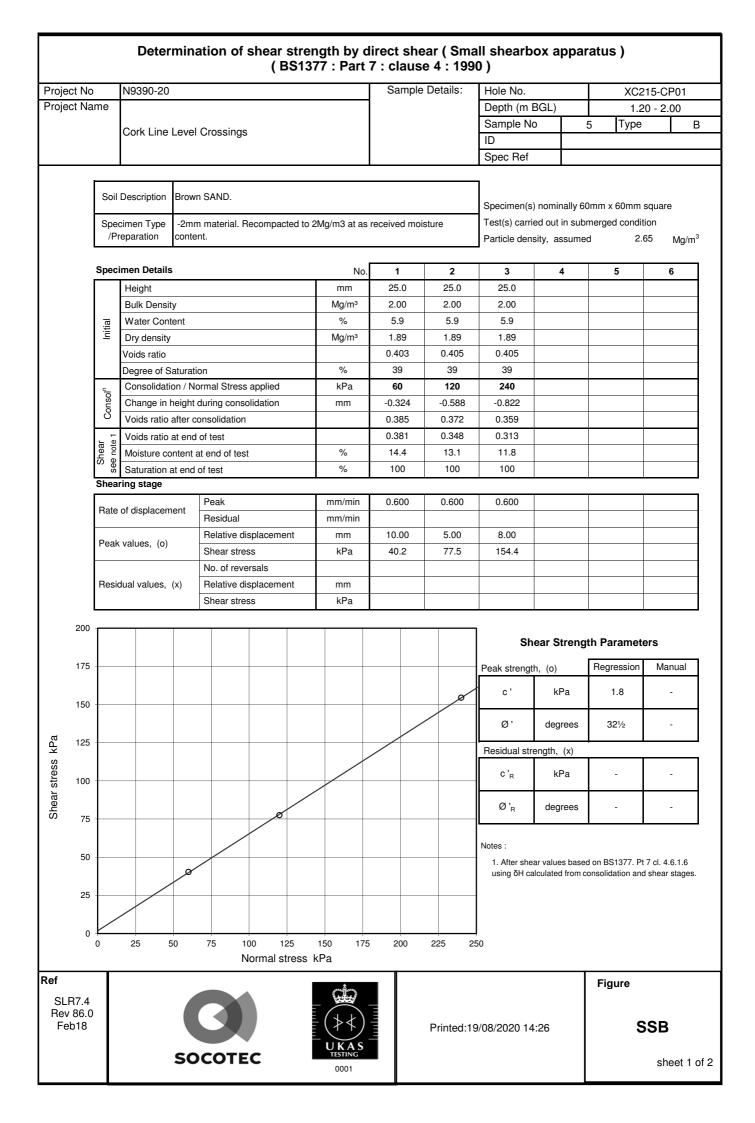

	Sample					р	p_{d}	W	< 425	WL	WP	ŀр	p_{s}	
Hole No.		Dept	h (m)		Soil Description	٣	Pa		µm sieve			۰P	Po	Remarks
	No.	from	to	type		Mg	/m3	%	%	%	%		Mg/m3	
XC215-CP01	5	1.20	2.00	в	Brown sandy slightly silty GRAVEL. Gravel is granite.						NP		Ū	
XC215-CP01	9	2.00	3.00	D				4.7						
XC215-CP01	14	3.60	4.50	D	Brown mottled grey slightly sandy slightly gravelly CLAY.				56 s	24 a	15	9		
XC215-CP01	19	6.00	6.80	в	Brown sandy clayey GRAVEL.				15 s	24 a	15	9		
XC215-CPRC01	3	0.30	1.20	D	Brown slightly gravelly clayey SAND.				58 s	27 a	18	9		
XC215-CPRC01	12	3.00	4.00	D	Brown sandy slightly clayey GRAVEL.	- 6.6								
XC215-CPRC01	16	4.70	6.00	D	Brown slightly sandy slightly gravelly silty CLAY.				64 s	26 a	18	8		
XC215-CPRC02	3	1.20	2.00	в	Brown slightly sandy slightly silty GRAVEL. Gravel is granite.						NP			
XC215-CPRC02	6	2.00	3.00	D	Brown sandy slightly clayey GRAVEL.			5.5						
XC215-CPRC02	12	4.20	5.00	D	Brown slightly sandy slightly gravelly CLAY.				56 s	24 a	17	7		
XC215-CPRC02	16	6.00	6.20	D	Brown slightly sandy clayey GRAVEL. Gravel is granite.				37 s	27 b	17	10		
General notes:	All above tes	sts carried	out to BS	1377 : ²	990 unless annotated otherwise. See Remarks for	further d	letails							
Key: p bulk density, linear		Liquid lir			WP Plastic limit			n prepara			ps pa		nsity	
pd dry density w moisture content		4 point co 1 point co			NP non - plastic IP Plasticity Index			natural : ed specir			-g = ga -р = sm		nometer	
 * test carried out to BS E 					ור רומטוטונץ וווטפא			oved by h			-h = 21	ап рукі	UNER	
QA Ref					Project No N9390-20						Fi	gure		
SLR 1 Rev 2.94			X		Project Name Cork Line Le	vel Cro	ossina	S					INC	X
Mar 17							.9							
											_			
SLR 1 Rev 2.94 Mar 17 SOCOTEC			The results reported relate only to the sample expressed herein are outside the scope of U	les testeo IKAS acc	d; opinio creditatio	ns and in n. © Cop	terpretat yright 20	tions)17		Printe	d: 19/08	/2020 14:28		
	SOCOTEC UK Limited													

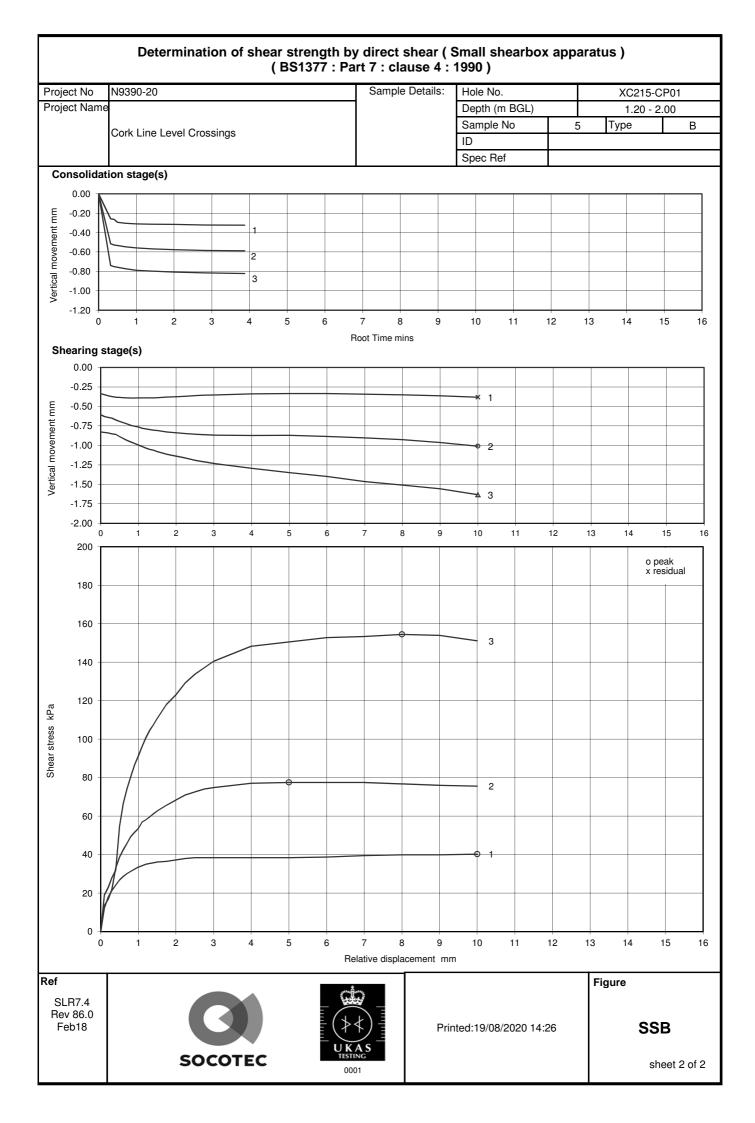












Certificate Number 20-15912

Client Socotec - Geotechnical Lab Askern Road Doncaster DN6 8DG

- Our Reference 20-15912
- Client Reference N9390-20
 - Order No (not supplied)
 - Contract Title Cork Line Level Crossing
 - Description 2 Soil samples.
 - Date Received 21-Aug-20
 - Date Started 21-Aug-20
- Date Completed 25-Aug-20
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

25-Aug-20

Summary of Chemical Analysis Soil Samples

Our Ref 20-15912 Client Ref N9390-20 Contract Title Cork Line Level Crossing

CONTRACT THE CORVENCES	5115				
			Lab No	1715660	1715661
		-		XC215-	XC215-
		Sa	ample ID	CPR02	CPR01
			Depth	1.20-2.00	1.20-2.00
			Other ID		
		Sam	ple Type	В	В
		Samp	ling Date	11/08/2020	11/08/2020
		Sampl	ing Time	n/s	n/s
Test	Method	LOD	Units		
Inorganics					
рН	DETSC 2008#		pН	8.0	8.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	82	140
Sulphur as S, Total	DETSC 2320	0.01	%	0.02	0.02
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.05	0.05

Information in Support of the Analytical Results

Our Ref 20-15912 Client Ref N9390-20 Contract Cork Line Level Crossing

Containers Received & Deviating Samples

		Date			Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1715660	XC215-CPR02 1.20-2.00 SOIL	11/08/20	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
1715661	XC215-CPR01 1.20-2.00	11/08/20	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
Kow D. Dlact	ic T Tub				

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Appendix I Geotechnical Rock Core Laboratory Test Results

Point Load Index Test

All specimen	s tested	at as rece	ived v	vater c	conten	nt unless shown	ı other	wise										
Test Type								Diam	etral			A	xial		Blc	ock/irreç	gular lui	mp
D - Diametra Direction (э, В -	Block			P				ΙP		<u> </u> P			
L - parallel t	o planes	s of weakr	ness	-			• /		<u> </u>			• (+		. –		T .	
P - perpendi		planes of	i weal	kness			<u>م</u> أ(П	Ī		1	Lne			D _{ps}
Dimensions Dps - Distan		veen plate	ns(p	laten	separ	ration)	D _{ps}			(W	Dp	s 🖣	W	•	1	W		/
Dps' - at fail	ure	-			-	-	I	∎ L _{ne}	•			+ U		J	L			
Lne - Length						Ilar to load, P			1									
W - Widdi y	1 3101	35t union	SIGUI	Jeiher	luicu	Idi tu iudu, i												
		Π	τ	τ			τ		—	—					— —	PointLo	oad Index	T
	'		0	<u>م</u> ر	Ę			t Type ISRM	ĺ,		Dime	ensions		LOAD	eter,		IPa	
ole	E	Sample Ref	Sample Type	Specimen Ref	Specimen Depth			and 8	Failure Valid (Y/N)		-			Р	De equivalent diameter, mm	F = (De	/50)0.45	Remarks
Borehole	Depth, m	ample	mple	ecime	cimer	Rock type	B	ς Ĵ	re Va						De alent di mm			
-		ö	Sa	Sp	Spe		Type (D, A, I, B)	Direction (L, P or U)	Failu	Lne mm	W mm	Dps mm	Dps' mm	kN	quive	ls	ls(50)	
	 '					<u> </u>	Ġ.	نے ق	\square						Φ			
XC215-	0.60					LIMESTONE	D	L	Y	50.0	75 5	74.0	71.0	24.69	72 10	4.05	4 90	9.91-10.03m
CPRC01	9.60		С	1		LIMESIUME	U			50.0	75.5	74.0	/1.0	21.68	73.19	4.05	4.80	9.91-10.030
XC215-			<u> </u>															<u> </u>
CPRC01	11.10		С	1		MUDSTONE	D	L	Y	60.0	74.7	74.0	72.0	0.10	73.33	0.02	0.02	11.84-11.96m
	'	<u> </u>	┢	+'	├──	<u> </u>	\vdash	┨──┦		\vdash	├ ──'	──'	├──'	'	──┦	├───		+
XC215- CPRC01	11.10		с	2		MUDSTONE	А	Р	Υ		75.7	74.0	68.0	0.10	80.95	0.02	0.02	12.38-12.45m
	 '	 	┣—	 '	┝	 	-	\vdash	⊢'		 '	└──'	<u> </u> '	 '	───′	┣───		
XC215-	12.60		с	1		LIMESTONE	Т	Р	Y	40.0	75.1	56.0	52.0	0.10	70.50	0.02	0.02	13.12-13.20m
CPRC01			-					!	I'				-					
XC215-									<u> </u>									
CPRC02	6.20		С	1		LIMESTONE	D	L	Y	60.0	76.7	76.0	76.0	41.67	76.34	7.15	8.65	6.90-7.03m
		<u> </u>	┢	+	<u> </u>		+	├ ──┦			├ ──'		\vdash	'				+
XC215- CPRC02	6.20		С	2		LIMESTONE	D	L	Y	50.0	64.0	62.0	61.0	0.10	62.46	0.03	0.03	7.21-7.33m
	 '	───	┢	 '	—	 	-	\vdash	┝──╵		 '	 '	 '	 '	───┦	┣───	 '	
	'							!	1 '			'				1		
	'							!	1 '			'				1		
	'							!	1 '			'				1		
	'							!	1 '			'				1		
								!	1 '		'	'				1		
								!	1 '		'							
	'							!	1 '			'				1		
	'							!	1 '			'				1		
	'							!	1 '			'				1		
	'							!	1 '			'				1		
	'							!	1 '			'				1		
	'							!	1 '			'				1		
									1 '			'				1		
	L	L		L	Į	<u> </u>		ļ)				<u>ا</u>	<u> </u>			Ļ	J	<u>.</u>
QA Ref		ž														\neg		
ISRM 85	A.						oject N			N943							Figure	
Rev 2.10 Aug 17	(>	<)-				Pro	oject N	ame		Cork I	Line Lo	evel C	rossin	gs			Ρ	PLT
Ŭ		AS			~													
	TEST	TING				Тр	e results	reporter	d relate	only to t	he samr	les test	ed: opini	ons and int	terpretations	_		
	000	•	50	C	OT	FEC exp	pressed h	herein ar	re outsid	le the sc	ope of l	JKAS ac	creditati	on. © Copy	yright 2017			t Printed 2020 11:34

Appendix J Environmental Laboratory Test Results

Chemtest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	20-15386-1		
Initial Date of Issue:	24-Jun-2020		
Client	Environmental Laboratory Services Ltd		
Client Address:	Acorn Business Campus Mahon Industrial Park Blackrock Cork Ireland		
Contact(s):	Emer Kearney Results		
Project	Soil Testing		
Quotation No.:		Date Received:	18-Jun-2020
Order No.:	7339	Date Instructed:	18-Jun-2020
No. of Samples:	2		
Turnaround (Wkdays):	5	Results Due:	24-Jun-2020
Date Approved:	24-Jun-2020		
Approved By:			
My May			
Details:	Glynn Harvey, Technical Manager		

Results - Leachate

Client: Environmental Laboratory Services Ltd			Che	mtest J	ob No.:	20-15386	20-15386
Quotation No.:			Chemte	est Sam	ple ID.:	1018890	1018891
Order No.: 7339				nt Samp		182115/001	182115/002
			Cli	ent Sam	ple ID.:	1	2
				Sampl	e Type:	SOIL	SOIL
Determinand	Accred.	SOP	Туре	Units	LOD		
pН	U	1010	10:1		N/A	9.9	8.8
Cyanide (Free)	U	1300	10:1	mg/l	0.050	< 0.050	< 0.050
Arsenic (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0
Boron (Dissolved)	U	1450	10:1	µg/l	20	< 20	< 20
Barium (Dissolved)	U	1450	10:1	µg/l	5.0	< 5.0	< 5.0
Beryllium (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0
Cadmium (Dissolved)	U	1450	10:1	µg/l	0.080	< 0.080	< 0.080
Chromium (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0
Copper (Dissolved)	U	1450	10:1	µg/l	1.0	1.5	< 1.0
Mercury (Dissolved)	U	1450	10:1	µg/l	0.50	< 0.50	< 0.50
Nickel (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0
Lead (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0
Selenium (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0
Vanadium (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0
Zinc (Dissolved)	U	1450	10:1	µg/l	1.0	1.7	< 1.0
Aliphatic TPH >C5-C6	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C6-C8	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C8-C10	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C10-C12	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C12-C16	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C16-C21	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C21-C35	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C35-C44	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Total Aliphatic Hydrocarbons	N	1675	10:1	µg/l	5.0	[A] < 5.0	[A] < 5.0
Aromatic TPH >C5-C7	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C7-C8	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C8-C10	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C10-C12	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C12-C16	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C16-C21	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C21-C35	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C35-C44	N	1680	10:1	µg/l	50.00	[A] < 50	[A] < 50
Total Aromatic Hydrocarbons	N	1675	10:1	µg/l	5.0	[A] < 5.0	[A] < 5.0
Total Petroleum Hydrocarbons	N	1675	10:1	µg/l	10	[A] < 10	[A] < 10
Benzene	U	1760	10:1	µg/l	1.0	[A] < 1.0	[A] < 1.0
Toluene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
Ethylbenzene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
m & p-Xylene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
o-Xylene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
Methyl Tert-Butyl Ether	N	1760	10:1	µg/l	1.0	[A] < 1.0	[A] < 1.0

Results - Leachate

Client: Environmental Laboratory Services Ltd	Chemtest Job No.:			20-15386	20-15386		
Quotation No.:		Chemtest Sample ID.:				1018890	1018891
Order No.: 7339	Client Sample Ref.:				182115/001	182115/002	
		Client Sample ID.:				1	2
		Sample Type:			SOIL	SOIL	
Determinand	Accred.	SOP	Туре	Units	LOD		
Naphthalene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Acenaphthylene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Acenaphthene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Fluorene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Phenanthrene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Anthracene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Fluoranthene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Pyrene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Chrysene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	1800	10:1	µg/l	2.0	< 2.0	< 2.0

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1018890	182115/001	1			A	Amber Glass 250ml
1018890	182115/001	1			A	Plastic Tub 500g
1018891	182115/002	2			A	Amber Glass 250ml
1018891	182115/002	2			A	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5–C6, >C6–C8, >C8– C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Pentane extraction / GCxGC FID detection
1680	Extractable Petroleum Hydrocarbons	Aliphatics: >C5–C6, >C6–C8, >C8– C10*, >C10–C12*, >C12–C16*, >C16–C21*, >C21– C35*, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10*, >C10–C12*, >C12–C16*, >C16– C21*, >C21– C35*, >C35– C44	Dichloromethane extraction / GCxGC FID detection
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

The right chemistry to deliver results

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

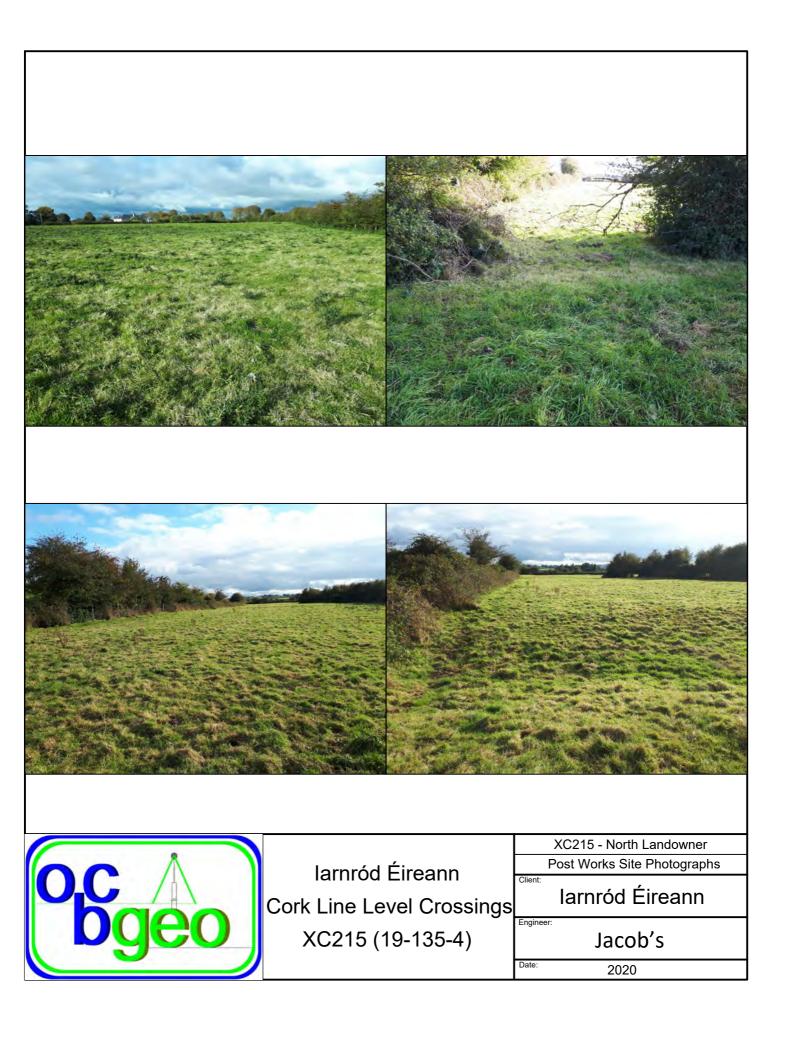
Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to:

customerservices@chemtest.com

Appendix K Pre & Post Site Condition Photographs



Cork Line Level Crossings – XC219 Ground Investigation

Primary Author:	Ian Holley
Client:	Irish Rail
Client's Representative:	JACOBS
Report Date:	25 th November 2020
Report No.:	OCB19-135-5
File Location:	OCB19-135-5/Reporting/XC219

CONTENTS

Document Control Sheet Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUTHORITY	1
2	SCOPE	1
3	DESCRIPTION OF SITE	1
4	 SITE OPERATIONS	2
	 4.1.3 Rotary Drilled Boreholes 4.2 Standpipe Installations 4.3 Trial Pits 4.4 Indirect CBR Tests 4.5 Water Purging 4.6 Surveying 	
5	 4.6.1 Geophysical Survey LABORATORY WORK	7 7 7
6	 GROUND CONDITIONS	8 8
7	DISCUSSION 7.1 Proposed Construction	
8	REFERENCES	10

APPENDICES

Appendix A	Site and Exploratory Hole Location Plans
Appendix B	Borehole Logs
Appendix C	Core Photographs
Appendix D	Trial Pit Logs
Appendix E	Trial Pit Photographs
Appendix F	Indirect CBR Test Results
Appendix G	Water Purging Data and Logs
Appendix H	Geotechnical Soil Laboratory Test Results
Appendix I	Geotechnical Rock Laboratory Test Results
Appendix J	Environmental Laboratory Test Results
Appendix K	Geophysical Survey Report
Appendix L	Pre & Post Site Condition Photographs

Document Control Sheet

Report No.:	OCB19-135-5
Project title:	Cork Line Level Crossings – XC219
Client:	Irish Rail
Client's Representative:	JACOBS

Revision	Status	Report prepared by:	Report reviewed by:	Report approved by:	Issue date
001	Draft	Ian Holley	Glen Byrne	Michael O'Connell	1st October 2020
002	Final Factual	Ian Holley	Glen Byrne	Michael O'Connell	25 th November 2020

The works were conducted in accordance with:

Specification And Related Documents For Ground Investigation In Ireland. (2016) 2nd ed. Engineers Ireland.

BS EN 1997: Eurocode 7 - Geotechnical Design – Parts 1 & 2 (2007)

UK Specification for Ground Investigation 2nd Edition (2012)

British Standards Institute (2010) BS 5930:1999 + A2: 2010, Code of practice for site investigations. Incorporating Amendment Nos. 1 and 2, as partially replaced by:

- BS EN ISO 22475-1:2006: Geotechnical investigation and testing. Sampling methods and groundwater measurements. Technical principles for execution
- BS EN ISO 14688-1:2002/Amd 1:2013: Geotechnical investigation and testing. Identification and classification of soil. Identification and description
- BS EN ISO 14688-2:2004/Amd 1:2013: Geotechnical investigation and testing. Identification and classification of soil. Principles for a classification
- BS EN ISO 14689-1:2003: Geotechnical investigation and testing. Identification and classification of rock. Identification and description
- BS EN ISO 22476-2:2005/Amd 1:2011: Geotechnical investigation and testing. Field testing. Dynamic probing
- BS EN ISO 22476-3:2005/Amd 1:2011: Geotechnical investigation and testing. Field testing. Standard penetration test

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in Section 6 of BS 5930: 1999 + A2: 2010, The Code of Practice for Site Investigation. The amendments revised the Standard to remove text superseded by BS EN ISO 14688-1:2002, BS EN ISO 14688-2:2004 and EN ISO 14689-1:2003 and refers to the relevant standard for each affected subclause. However, the following terms are used in the description of fine-grained soils, where applicable:

- Soft to Firm: fine-grained soil with consistency description close to the boundary between soft and firm soil (Table 13 of BS5930).
- Firm to Stiff: fine-grained soil with consistency description close to the boundary between firm and stiff soil (Table 13 of BS5930).

U Nominal 100mm diameter undisturbed open tube sample P Nominal 100mm diameter undisturbed piston sample B Bulk disturbed sample D Small disturbed sample W Water sample ES / EW Soil sample for environmental testing / Water sample for environmental testing SPT Standard penetration test using a split spoon sampler (small disturbed sample obtained) SPT(C) Standard penetration test using 60-degree solid cone x_x/x,x,x,x Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length. The length achieved is stated (mm) for any test increment less than 75mm N=X SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm) N=X/Z Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm) V Shear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPa 'V: undisturbed vane shear strength VR: remoulded vane shear strength dd/mm/yy: dry Date & water level at the borehole depth at the end of shift and the start of the following shift Abbreviations relative to rock core - reference Clause 44.4.4 of BS 5930: 1999 TCR (%) Total Core Recovery: Ratio	Abbreviations used o
B Bulk disturbed sample D Small disturbed sample W Water sample ES / EW Soil sample for environmental testing / Water sample for environmental testing SPT Standard penetration test using a split spoon sampler (small disturbed sample obtained) SPT (C) Standard penetration test using 60-degree solid cone x,x/x,x,x,x Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length. The length achieved is stated (mm) for any test increment less than 75mm N=X SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm) N=X/Z Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm) V Shear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPa V': undisturbed vane shear strength VR Vi undisturbed vane shear strength VR Date & water level at the borehole depth at the end of shift and the start of the following shift Abbreviations relating to rock core - reference Clause 44.4.4 of BS 5930: 1999 TCR (%) Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length or ore run.	U
D Small disturbed sample W Water sample ES / EW Soil sample for environmental testing / Water sample for environmental testing SPT Standard penetration test using a split spoon sampler (small disturbed sample obtained) SPT (C) Standard penetration test using 60-degree solid cone x,x/x,x,x,x Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length. The length achieved is stated (mm) for any test increment less than 75mm N=X SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm) N=X/Z Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm) V Shear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPa V: undisturbed vane shear strength VR Shear vane test (borehole depth at the end of shift and the start of the following shift Abbreviations relative to rock core - reference Clause 44.4.4 of BS 5930: 1999 TCR (%) Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run. Solid core has a full diameter,	Р
W Water sample ES / EW Soil sample for environmental testing / Water sample for environmental testing SPT Standard penetration test using a split spoon sampler (small disturbed sample obtained) SPT (C) Standard penetration test using 60-degree solid cone x,x/x,x,x,x Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length. The length achieved is stated (mm) for any test increment less than 75mm N=X SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm) N=X/Z Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm) V Shear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPa V: undisturbed vane shear strength VR Date & water level at the borehole depth at the end of shift and the start of the following shift Abbreviations relative to rock core - reference Clause 44.44 of BS 5930: 1999 TCR (%) Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length core run. Solid core has a full diameter,	В
ES / EWSoil sample for environmental testing / Water sample for environmental testingSPTStandard penetration test using a split spoon sampler (small disturbed sample obtained)SPT (C)Standard penetration test using 60-degree solid cone $x_xx/x_xx_xx_x$ Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length. The length achieved is stated (mm) for any test increment less than 75mmN=XSPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm)N=X/ZIncomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm)VShear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPa V: undisturbed vane shear strength VR: remoulded vane shear strengthdd/mm/yy: 1.0 dd/mm/yy: dryDate & water level at the borehole depth at the end of shift and the start of the following shiftAbbreviations relating to rock core - reference Clause 44.4.4 of BS 5930: 1999TCR (%)Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length core run.Solid Core Recovery: Ratio of solid core to the total length of core run.	D
SPTStandard penetration test using a split spoon sampler (small disturbed sample obtained)SPT (C)Standard penetration test using 60-degree solid conex,x/x,x,x,xBlows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length. The length achieved is stated (mm) for any test increment less than 75mmN=XSPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm)N=X/ZIncomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm)VShear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPa V: undisturbed vane shear strength dd/mm/yy: 1.0Date & water level at the borehole depth at the end of shift and the start of the following shiftAbbreviations relating to rock core - reference Clause 44.4.4 of BS 5930: 1999TCR (%)Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter,	W
SPT (C)Standard penetration test using 60-degree solid conex,x/x,x,x,xBlows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length. The length achieved is stated (mm) for any test increment less than 75mmN=XSPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm)N=X/ZIncomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm)VShear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPa V: undisturbed vane shear strength Vd/mm/yy: 1.0 dd/mm/yy: dryDate & water level at the borehole depth at the end of shift and the start of the following shiftAbbreviations relating to rock core - reference Clause 44.4.4 of BS 5930: 1999TCR (%)Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length core run. Solid Core Recovery: Ratio of solid core to the total length of core run.	ES / EW
K,X/X,X,XBlows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length. The length achieved is stated (mm) for any test increment less than 75mmN=XSPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm)N=X/ZIncomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm)VShear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPa V: undisturbed vane shear strength VR: remoulded vane shear strengthdd/mm/yy: 1.0 dd/mm/yy: dryDate & water level at the borehole depth at the end of shift and the start of the following shiftAbbreviations relating to rock core - reference Clause 44.4.4 of BS 5930: 1999TCR (%)Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run. Solid Core has a full diameter,	SPT
x,x/x,x,xdrive (150mm) and the remaining four to the 75mm increments of the test length. The length achieved is stated (mm) for any test increment less than 75mmN=XSPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm)N=X/ZIncomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm)VShear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPa V: undisturbed vane shear strength VR: remoulded vane shear strengthdd/mm/yy: 1.0 dd/mm/yy: dryDate & water level at the borehole depth at the end of shift and the start of the following shiftAbbreviations relative to require to reck core - reference Clause 44.4.4 of BS 5930: 1999TCR (%)Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter,	SPT (C)
N=X (300mm) N=X/Z Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm) V Shear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPa V: undisturbed vane shear strength VR: remoulded vane shear strength dd/mm/yy: 1.0 dd/mm/yy: dry Date & water level at the borehole depth at the end of shift and the start of the following shift Abbreviations relative to rock core - reference Clause 44.4.4 of BS 5930: 1999 Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run. Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter,	x,x/x,x,x,x
N=X/Z represent the total blows for the given test length 'Z' (mm) V Shear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPa VR V: undisturbed vane shear strength dd/mm/yy: 1.0 Date & water level at the borehole depth at the end of shift and the start of the following shift Abbreviations relative to rock core - reference Clause 44.4.4 of BS 5930: 1999 TCR (%) Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run. Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter,	N=X
VR V: undisturbed vane shear strength VR: remoulded vane shear strength dd/mm/yy: 1.0 dd/mm/yy: dry Date & water level at the borehole depth at the end of shift and the start of the following shift Abbreviations relative to rock core - reference Clause 44.4.4 of BS 5930: 1999 TCR (%) Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run. Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter,	N=X/Z
dd/mm/yy: dry and the start of the following shift Abbreviations relative to rock core - reference Clause 44.4.4 of BS 5930: 1999 TCR (%) Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run. Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter,	•
TCR (%) Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run. Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter,	
ICR (%) core run. Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter,	Abbreviations relation
	TCR (%)
the core axis between natural fractures.	SCR (%)
RQD (%) Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.	RQD (%)
FI Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.	FI
NI Non-Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.	NI
AZCL Assessed zone of core loss: The estimated depth range where core was not recovered.	AZCL
DIF Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.	DIF

Cork Line Level Crossings – XC219

1 AUTHORITY

On the instructions of Iarnród Éireann / Irish Rail, a ground investigation was undertaken at multiple locations along the Cork to Dublin railway line, between Limerick Junction and Mallow stations, to provide geotechnical and environmental information for input to the design and construction of proposed overbridges, embankments, culverts, access roads and footpaths to enable the closure of five manned level crossings

This report details the work carried out both on site at XC219 and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the site investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those measured during the investigation.

This report was prepared by OCB Geotechnical Ltd for the use of Iarnród Éireann / Irish Rail in response to particular instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the JACOBS, included boreholes, trial pits, indirect CBR testing, installation of standpipes, water purging, soil and rock core sampling, in-situ and laboratory testing, a geophysical survey report and the preparation of a factual report on the findings.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, level crossing XC219 is located in the Creggane and Bregoge townlands, 0.9km west of Buttevant. The site is located in a rural area, surrounded by agricultural land with a number of houses and farms in the area.

The existing site is presented on the site and exploratory hole location plans in Appendix A.

4 SITE OPERATIONS

Site operations, which were conducted between 17th February 2020 and 8th September 2020, included:

- One (1) Cable Percussion Borehole
- Four (4) Rotary Boreholes
- Five (5) Cable Percussion with Rotary follow-on Boreholes
- A Standpipe Installation in five (5) Boreholes
- Four (4) Trial Pits
- Indirect CBR tests at eight (8) locations
- Water Purging in four (4) locations
- A Geophysical Survey was carried out by Minerex

The exploratory holes and in situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.1 Boreholes

A total of ten boreholes were put down in a minimum diameter of 101mm through soils and rock strata to their completion depths by a combination of methods, including cable percussion boring by Pilcon rigs, and rotary drilling by a T44 rig.

The borehole logs state the methodology and plant used for each location, as well as the appropriate depth ranges.

A summary of the boreholes, subdivided by category in accordance with the methods employed for their completion, is presented in the following sub-sections.

Appendix B presents the borehole logs.

4.1.1 Cable Percussion Boreholes

One borehole (CP01) was put down to completion in minimum 200mm diameter using a Pilcon cable percussion soil boring rig. the borehole was terminated on encountering virtual refusal on obstructions, including large boulders and weathered bedrock.

Hand dug inspection pits were carried out between ground level and 1.2m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Disturbed (bulk bag and tub) samples were taken within the encountered strata. Environmental samples were taken at standard intervals, as directed by Jacobs.

Standard penetration tests were carried out in accordance with EC7 at standard depth intervals using the split spoon sampler (SPT). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Where water was added to assist with boring, a note has been added to the log to account for same.

Appendix B presents the borehole logs.

4.1.2 Boreholes by Combined Percussion Boring and Rotary Follow-On Drilling

Five boreholes (CPRC01, CPRC02, CPRC03, CPRC04 & CPRC05) were put down by a combination of cable percussion boring and rotary follow-on open hole and coring drilling techniques. Where the cable percussion borehole had not been advanced onto bedrock, rotary percussive methods were employed to advance the borehole to completion/obstruction.

Hand dug inspection pits were carried out between ground level and 1.2m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Disturbed (bulk bag and tub) samples were taken within the encountered strata. Environmental samples were taken at standard intervals, as directed by Jacobs.

Standard penetration tests were carried out in accordance with EC7 at standard depth intervals throughout the overburden using the split spoon sampler (SPT). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Where water was added to assist with boring, a note has been added to the log to account for same.

Where coring was carried out within bedrock strata, Geobor S Coring was used. The core was extracted in up to 1.5m lengths using a SK6L core barrel, which produced core of nominal 102mm diameter, and was placed in single channel wooden core boxes.

The core was subsequently photographed and examined by a qualified and experienced Engineering Geologist, thus enabling the production of an engineering log in accordance with *BS 5930:1999 + A2: 2010, Code of practice for site investigations* (Incorporating Amendment Nos. 1 and 2).

Core logging was carried out both on and off site by the OCB Geotechnical Engineering Geologist.

Appendix B presents the borehole logs, with core photographs presented in Appendix C.

4.1.3 Rotary Drilled Boreholes

Four boreholes (CPRC01A, CPRC06, CPRC07 & CPRC08) were put to their completion by rotary drilling techniques only. The boreholes were completed using a T44 rig.

Symmetrix-cased full hole rotary percussive drilling techniques were employed to advance the boreholes to bedrock, after which rotary coring was employed to recover core samples of the bedrock. SPTs were carried out at standard intervals throughout the overburden, with small and bulk disturbed samples obtained where possible through the soils strata.

Where coring was carried out within bedrock strata, Geobor S Coring was used. The core was extracted in up to 1.5m lengths using a SK6L core barrel, which produced core of nominal 102mm diameter, and was placed in single channel wooden core boxes.

The core was subsequently photographed and examined by a qualified and experienced Engineering Geologist, thus enabling the production of an engineering log in accordance with *BS 5930:1999 + A2: 2010, Code of practice for site investigations* (Incorporating Amendment Nos. 1 and 2).

Core logging was carried out both on and off site by the OCB Geotechnical Engineering Geologist.

Appendix B presents the borehole logs, with core photographs presented in Appendix C.

4.2 Standpipe Installations

A groundwater monitoring standpipe was installed in boreholes CP01, CPRC01A, CPRC02, CPRC04 and CPRC05.

Details of the installations, including the diameter of the pipe and depth range of the response zone, are provided in Appendix B on the individual borehole logs.

Following the completion of the intrusive investigation work groundwater monitoring was undertaken at the site on four occasions. The results of the monitoring are presented in the report below in Section 6.3.

4.3 Trial Pits

Four trial pits (TP01–TP04) were excavated using a 15t tracked excavator fitted with a 600mm wide bucket, to depths between 1.90m and 4.30m bgl. Trial pit TP01 was terminated at 2.50m due to rapid water inflow causing pit walls to collapse. Trial pit TP02 was terminated at 4.30m due to pit walls collapsing. Trial pits TP03 and TP04 were terminated upon encountering refusal on presumed weathered bedrock at 3.00m and 1.90m respectively.

Environmental samples were taken at depths of 0.05m, 0.50m, 1.0m and 3.0m in each trial pit.

Disturbed (small tub and bulk bag) samples were taken at standard depth intervals and at change of strata.

Hand Vane testing was completed successfully where appropriate and where specified by Jacobs.

Any water strikes encountered during excavation were recorded along with any changes in their levels as the excavation proceeded. The stability of the trial pit walls was noted on completion.

Appendix D presents the trial pit logs with photographs of the pits and arising provided in Appendix E.

4.4 Indirect CBR Tests

An indirect CBR test was conducted at eight locations (CBR-TP01-1 to TRL08) using a Dynamic Cone Penetrometer (DCP). The equipment was developed in conjunction with the UK Transport Research Laboratory, is used widely throughout the world, and is referred to in the UK Highway Agency Interim Advice Note 73/06.

The test results are presented in Appendix F in the form of plots of the variation with depth of the cumulative blow count. Straight lines have been fitted to the plots and the CBR for each depth range estimated using the following relationship, as proposed by DTP Interim Advice Note 73/06 (Design Guidance for Road Pavement Foundations):

Log CBR = 2.48-1.057 Log (mm/blow)

The occasionally elevated CBR values could be a consequence of the coarse-grained content of the penetrated soils and are often not representative of the soil matrix.

4.5 Water Purging

Prior to sampling from each standpipe (in CPRC01A, CPRC02, CPRC04 & CPRC05) water purging was carried out.

Appendix G presents the water purging data logs.

4.6 Surveying

A broad survey of the site using a handheld CAT scanner to identify any existing buried services or old foundations/obstructions to excavation was carried out before commencement of excavation works. A GPR survey to PAS 128 specification was carried out at each location prior to excavation. The GPR survey report is presented in an addendum to follow issuance of this report.

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from OCB Geotechnical. Surveying was carried out using a Trimble R6 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish Transverse Mercator, ITM) and ground elevation (mOD Malin) at each location are recorded on the individual exploratory hole logs. The exploratory hole plan presented in Appendix A shows these as-built positions.

Pre-work site conditions were surveyed and upon completion of all site works at each site a post-work site condition survey was carried out. The pre and post site condition photographs are presented in Appendix L.

4.6.1 Geophysical Survey

A geophysical survey was carried out by Minerex consisting of 2D-Resistivity profiles at the proposed bridge location.

The Minerex Geophysical Survey report is presented in Appendix K.

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described and their descriptions incorporated into the borehole logs.

5.1 Geotechnical Laboratory Testing of Soils

Laboratory testing of soils comprised:

- **soil classification:** Moisture Content measurement, Atterberg Limit tests and Particle Size Distribution analysis.
- soil chemistry: pH, Sulphur content and water-soluble and total Sulphate content.

Laboratory testing of soils samples was carried out in accordance with British Standards Institute (1990) *BS 1377:1990, Methods of test for soils for civil engineering purposes. Parts 1 to 9.*

The test results are presented in Appendix H.

5.2 Geotechnical Laboratory Testing of Rock

Laboratory testing of rock sub-samples comprised:

- point load index
- unconfined compressive strength (UCS) tests

Test	Test carried out in accordance with
Point load index	ISRM Suggested Methods (1985) Suggested method for determining point-load strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22, pp.
	53–60
Uniaxial compression	ISRM Suggested Methods (1981) Suggested method for determining deformability of rock materials in uniaxial compression, Part 2
strength tests	and
	ISRM (2007) Ulusay R, Hudson JA (eds) The complete ISRM suggested methods for rock characterization, testing and monitoring, 2007

The test results are presented in Appendix I.

5.3 Environmental Laboratory Testing of Soils

In addition, environmental testing, as specified by Jacobs was conducted on selected environmental samples by Socotec at its laboratory in Burton-on-Trent, United Kingdom. Results of environmental testing are presented in Appendix J.

6 **GROUND CONDITIONS**

6.1 General Geology of the Area

Teagasc soil mapping indicates that the site vicinity is underlain by Glacial Till derived chiefly from Namurian rocks with an approximate south-southwest to north-northeast orientated deposit of younger Alluvium overlying the Till in the more low-lying area to the west of the railroad.

The Geological Survey of Ireland (GSI) bedrock mapping database indicates that soils in the site area are underlain at depth by the Lower Carboniferous-age Hazelwood Limestone Formation, which consists of pale to medium grey massive skeletal calcilutite and rare calcarenites which show significant internal variation, similar to the Waulsortian Limestones facies.

The Lower Carboniferous limestones form part of Middle Devonian to Namurian (Upper Carboniferous) age sedimentary sequence in Munster which was subjected to compressional deformation during the Variscan Orogeny in Late Carboniferous and Early Permian times, resulting in the formation of a west-southwest to east-northeast orientated fold-thrust belt. The site vicinity is located between a west-southwest to east-northeast orientated fault and thrust fault and is also transected by north-south orientated faults. Bedrock in this area dips in variable directions, primarily to the north and south, having undergone buckle folding and contractional thrust faulting.

The site is underlain by a regionally important Karstified (diffuse) bedrock aquifer and has a high to extreme groundwater vulnerability. Numerous Karst features, such as depressions, swallow holes, caves and springs, occur in areas underlain by limestone in north County Cork.

6.2 Ground Types Encountered During Investigation of the Site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- Topsoil: encountered typically in 100mm to 300mm thickness.
- Made Ground (Fill): CP01, CPRC04, CPRC05 and CPRC08 have approximately up to 1.20m of granular fill.
- Glacial Till: sandy gravelly silty clay, frequently with cobble content, typically soft to firm in upper horizons, becoming very stiff with increasing depth.
- Fluvioglacial deposits: Typically medium dense sandy gravels.
- Bedrock (Limestone): Rockhead was encountered at levels between 2.30m and 8.30m bgl. Mostly medium strong to strong Limestone.

6.3 Groundwater

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

It should be noted that any groundwater strikes within bedrock may have been masked by the fluid used as the drilling flush medium.

Date		Depth to	standing water lev	vel (m)	
Date	CP01	CPRC01A	CPRC02	CPRC04	CPRC05
13/08/20	Dry	1.13	2.21	7.15	6.29
17/08/20	Dry	0.95	2.13	7.05	6.7
21/08/20	Dry	Field Flooded (above GL)	0.64	5.22	5.07
29/09/20	Dry	0.66	1.76	6.47	6.35

Groundwater monitoring to date in standpipe installations, yielded the following results:

Continued monitoring of the two installed standpipes will give an indication of the seasonal variation in groundwater level.

7 DISCUSSION

7.1 Proposed Construction

It is proposed to construct overbridges, embankments, culverts, access roads and footpaths to enable the closure of five manned level crossings.

No further details were available to OCB Geotechnical at the time of preparing this report.

8 **REFERENCES**

Specification And Related Documents For Ground Investigation In Ireland. (2016) 2nd ed. Engineers Ireland.

BS EN 1997-1: 2007. *Eurocode 7 - Geotechnical design - Part 1 General Rules*. British Standards Institution, London.

BS EN 1997-2: 2007. *Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing*. British Standards Institution, London.

BS 1377: 1990. *Methods of test for soils for civil engineering purposes*. British Standards Institution, London.

BS 5930: 2015. *Code of practice for ground investigations*. British Standards Institution, London.

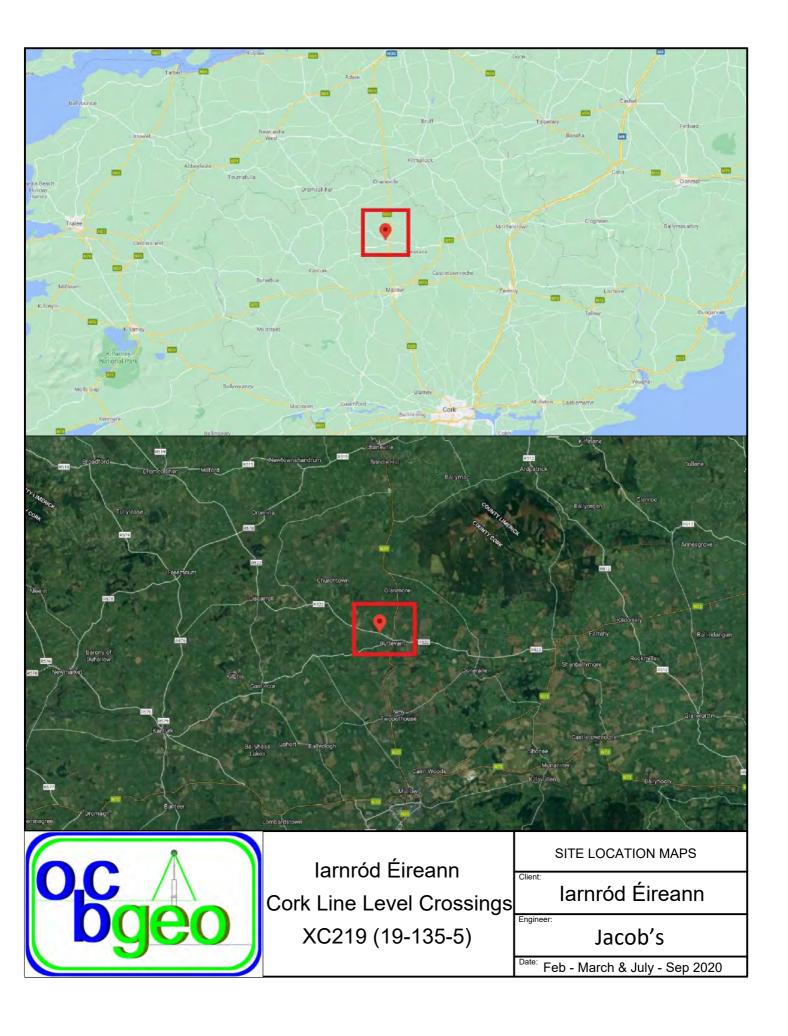
BS EN ISO 14688-1: 2002. *Geotechnical investigation and testing - Identification and classification of soil - Part 1 Identification and description*. British Standards Institution, London.

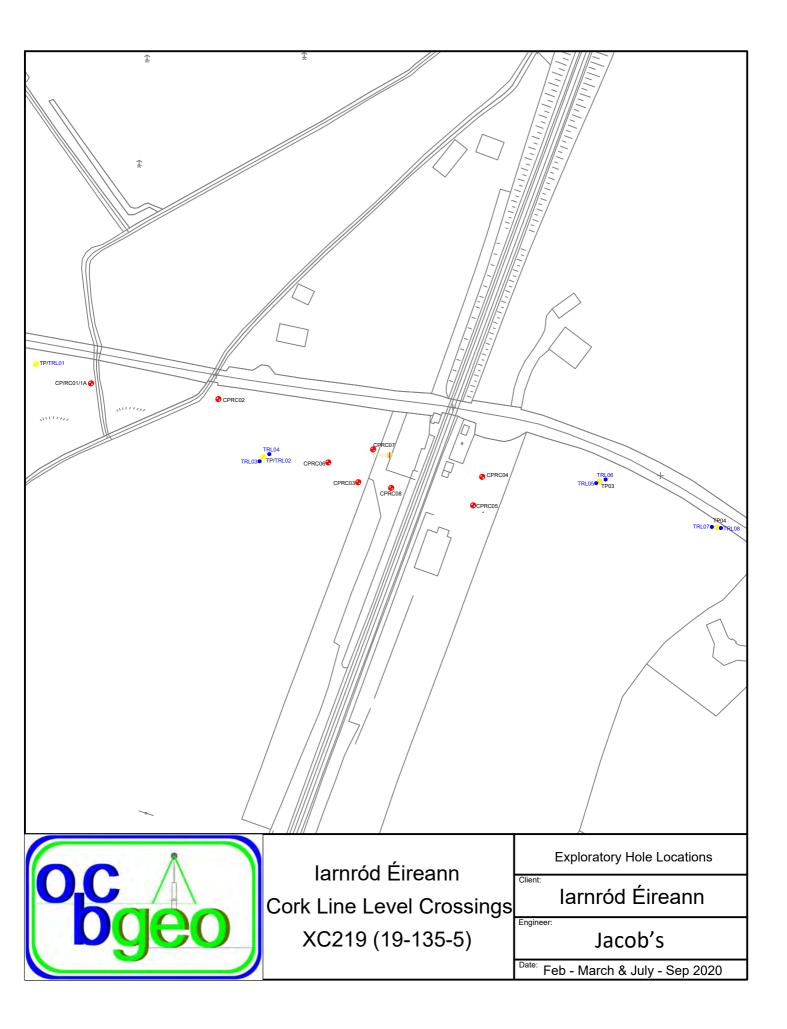
BS EN ISO 14689-1: 2003. Geotechnical investigation and testing - Identification and classification of rock - Part 1 Identification and description. British Standards Institution, London.

Building Research Establishment, 2005. BRE Special Digest 1, Concrete in aggressive ground.

Building Research Establishment, 2007. BRE Digest 365: Soakaways.

BS EN 12457-2: 2002 Characterisation of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction).


Environmental Protection Agency / Draft Guidance Note on Soil Recovery Waste Acceptance Criteria. December 2017. http://www.epa.ie/pubs/consultation/soilrecoveryconsultation/


Environmental Protection Agency / Waste Classification List of Waste & Determining if Waste is Hazardous or Non-hazardous. 1st June 2015 <u>https://www.epa.ie/pubs/reports/waste/stats/wasteclassification/EPA_Waste_Classification_2015_Web.</u> <u>pdf</u>

Environment Agency UK (2009). Soil Guideline Values (SGVs). https://www.gov.uk/government/collections/land-contamination-technical-guidance

Soil Remediation Circular 2013, Ministry for Environment and Infrastructure, The Hague, Netherlands. <u>https://rwsenvironment.eu/subjects/soil/legislation-and/soil-remediation/</u>

Appendix A Site and Exploratory Hole Location Plans

Appendix B Borehole Logs

		_⊼			Projec		Project				No.:		
)_C /				19-135			ne Level Crossings	хс	219-CF	P 01		
	DC	e ()		Coordi	nates:	Client:		Sh	eet 1 c	of 1		
				/	55329	2.77 E		Éireann / Irish Rail	-				
Method:	ion				60981	7.96 N		s Representative:	Scal	e: 1:	50		
Cable Percuss	sion						JACOBS	5	Dril	ler: A/	4		
Plant:						d Level:	Dates:	26/02/2020 27/02/2020	Logger: IH				
	Sample /	Casing	Water		_				-	-	_		
Pilcon	Sample / Tests ES1 ES2 B3 ES4 B5 D6 SPT (C) N=29 B7 D8 SPT (C) D9	Casing Depth (m)	Water Depth (m)	Field Records	86.7 Level (mOD) 86.24 85.54 85.04 84.54 84.16	4 mOD Depth (m) (Thickness) (0.50) (0.70) (0.70) (0.50) (0.50) (0.50) (0.50) (0.38)	Legend	26/02/2020 - 27/02/2020 Description MADE GROUND: Black slightly gravelly sandy silty CLAY with low cobble content, occasional roottes and slight organic odour (Reworked / fill material). Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles are subrounded. MADE GROUND: Black slightly gravelly slightly sandy silty CLAY with some roottets and slight organic odour. (Reworked / fill material). Sand is fine to coarse. Gravel is fine to medium, subangular. Stiff to very stiff brown with black mottling slightly sandy slightly silty gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subrounded. Cobbles are subangular to subrounded. Very stiff light brown slightly slightly gravelly slight yery sandy CLAY. Sand is fine to coarse. Gravel is fine to medium, subangular. Very stiff light brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is fine to medium, subangular. Vellowish / light brown slightly gravelly slightly sandy Slightly. Sandy Slightly Slightly Sandy Slightly Slightly Sandy Slightly Sli	2	ger: IH	0.5 - 1.0 - 1.5 - 2.0 - 3.0 - 3.0 - 3.5 - 4.0 - 5.5 - 6.5 - 7.0 -		
						-					7.5 -		
						- - - -					8.0 -		
						- - - -					9.0 -		
						-					9.5 -		
						-							
Remarks				(4.11				Water Added Water S From (m) To (m) Struck at (m) Casing		General	se to (
Chiselling Conti	inued: 2.58	8m - 2	.58r	n (1 Hour)					, (m) 1				
									llin- f	otail-			
								Casing Details Chise To (m) Diam (mm) From (m)	elling D To (m)		hh:mr		

6			٨			Project		-	t Name:	Borehole N
C) <mark>(</mark> C					19-135			ne Level Crossings	XC219-CPR
	D	Q	0	0		Coordi	nates:	Client:		Sheet 1 of
		-			/	55313	2.91 E		d Éireann / Irish Rail	
Method:	ionu	?ota	ny O	nen	-Rotary Coring	60985	6.42 N		s Representative:	Scale: 1:5
	5011+1	NOLA	Ty O	репя	FROTAL & COLLING			JACOB:		Driller: AA
Plant: Pilcon+T44							d Level: 2 mOD	Dates:	22/06/2020 - 29/06/2020	Logger: IH
Depth	Sam	ple /	Casing	Water		Level	Depth (m)			
(m)	Te	sts	Depth (m)	Depth (m)	Field Records	(mOD)	(Thickness)	Legend	Description	ੇ Backfill
0.05 0.10 - 0.50	ES1 B2					82.52	(0:10)		TOPSOIL SUBSOIL: Greyish brown slightly gravelly sandy CLAY. Gravel is fine to	
0.10 - 0.50	D3					02.12	(0.40) 0.50		coarse, angular to subrounded. Sand is fine to coarse.	
0.50 0.50 - 1.20	ES4 B5					82.12	0.50		Soft brown slightly gravelly sandy clayey GRAVEL with low cobble content.	
0.50 - 1.20	D6							• • • • •	Gravel is fine to coarse, angular to subrounded. Sand is fine to coarse.	
							-	• • • • •	-	
1.20 - 2.00 1.20 - 2.00	B7 D8						(1.50)		_	
1.20 - 1.65	SPT				N=6 (0,1/1,2,1,2)		-	· · · · ·		
1.50	N=6 ES9									
2.00 - 2.40	B10		1			80.62	2.00		Soft brownish grey silty CLAY.	
2.00 - 2.40 2.00 - 2.45	D11 SPT		1		N=6 (1,2/2,1,2,1)		(0.40)	×_×	Solution Broy and Section	
	N=6	. ,	1		··· ~ (+)=(=,+,2,1)	80.22	2.40	×	Very Dense grey slightly silty sandy GRAVEL. Gravel is fine to coarse,	
2.40 - 3.00 2.40 - 3.00	B12 D13		1						angular to subrounded. Sand is fine to coarse.	
3.00	ES14		1				(1.10)			
3.00 - 4.00	B15		1							
3.00 - 4.00 3.00 - 3.45	D16 SPT				N=60	70.45	3.50			
5.00 5.45	N=6				(9,10/14,18,13,15)	79.12	3.50		Medium Dense grey slightly clayey sandy GRAVEL. Gravel is fine to coarse,	
									angular to subrounded. Sand is fine to coarse.	
4.00 - 5.00 4.00 - 5.00	B17 D18						-			· ·
4.00 - 4.45	SPT				N=29 (8,9/7,7,7,8)		-		-	
	N=2	9								.
5.00 - 6.00	B19						_			
5.00 - 6.00	D20									
5.00 - 5.45	SPT N=2				N=24 (5,6/6,5,7,6)		(4.00)			
							(4.00)		-	
c oo = oo							-			
6.00 - 7.00 6.00 - 7.00	B21 D22									
6.00 - 6.45	SPT				N=21 (4,5/4,6,6,5)		-			
	N=2	T					-			
7.00 - 7.50	B23		1				-			
7.00 - 7.50 7.00 - 7.45	D24 SPT		1		N=22 (5,9/5,6,6,5)		-			
	N=2					75.12	7.50		Possible BOULDER obstruction, rotary open hole techniques employed to	-
							(0.50)	$0^{\circ}0$	blast past.	
<u>8:88 - 8:88</u>	SPT	(C)			50 (25 for 0mm/50	74.00	8.00		(Possible weathered bedrock)	
5.00 - 8.00			1		50 (25 for 0mm/50 50 (25 for 0mm/50 for 0mm) for 0mm)	74.62		╞┰┵┰┛	Medium Strong to Strong, light grey LIMESTONE with some quartz veining.	
			1						Distinctly weathered with some clay staining and infilling of discontinuities	
	37	20	17						and some orange oxide staining on discontinuity surfaces.	
	3/	20	1/				-		Discontinuities:	
			1	NI			(3.00)		-Mostly non-intact -Rough, undulating, extremely closely spaced.	
			1							
9.50	-		1	1			-			
	-		-							
	17	10	6				-			1
	TCR	SCR	RQD	FI					Continued on Next Page	Strike - General
Remarks									From (m) To (m) Struck at (m) Casing	Strike - General to (m) Time (min) Rose
									2.40 4.00 0.70 2.40 2 6.60 6	40 20 20 60 20 4
										elling Details
									To (m) Diam (mm) From (m) 8.00 200 7.50	To (m) Time (hl 7.50 01:0
									11.00 101	

						Projec	t No.:	Project	Name:	Bo	rehole No.:
C) <mark>C</mark>	, ,	\mathbb{A}			19-135			ne Level Crossings	x	219-CPRC01
	D	Q	e	\mathbf{O}		Coordi	nates:	Client:		9	Sheet 2 of 2
					/	55313	2.91 E		Éireann / Irish Rail		-le: 1.50
Method: Cable Percuss	ion+f	Rotai	ry O	pen+	Rotary Coring	60985	6.42 N	JACOBS	Representative:		ale: 1:50
Plant:			, ,	•	, ,	Groun	d Level:	Dates:	,	Dr	iller: +NOB
Pilcon+T44							2 mOD		22/06/2020 - 29/06/2020	Lo	gger: IH
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Backfill
							Ē				10.5 —
											-
11.00						71.62	11.00		End of borehole at 11.000m	_	11.0
											-
							-				11.5 —
											-
											12.0
											12.5
											13.0
											-
											13.5 -
							Ē				14.0
											14.5 —
							-				-
											16.0
											-
											16.5 -
							- - -				17.0
											- - 17.5 —
											18.0
							Ē				18.5 —
							-				-
											19.0
							Ē				
											19.5 —
											-
							-				20.0
											20.5
	TCR	SCR	RQD	FI			-			-	
Remarks						1	1				- General Time (min) Rose to (m
									2.40 4.00 0.70 2.40	2.40	20 0.70 20 2.10
										6.60 Chiselling	
									To (m) Diam (mm) From (m) 8.00 200 7.50 11.00 101 101	To (1 7.5	
									101		

						Projec	t No.:	Project	Name:	B	oreh	ole	No.:		
C).C		\mathbb{A})	19-135			ne Level Crossings		C219				
	h		þ			Coordi	nates:	Client:			Shee	+ 1	of 2		
		J			J		E	larnróc	Éireann / Irish Rail		SUGE	:L⊥(01.2		
Method:						1		Client's	Representative:	S	cale:	1:	:50		
Rotary Open+	Rotar	ry Co	oring	B			Ν	JACOBS	5	Driller: NOB					
lant: 44 Depth TCR SCR RQD FI Field Records						Ground Level:		Dates:				Logger: IH			
	1					Level	mOD Depth (m)		01/07/2020 -			-			
(m)	TCR	SCR	RQD	FI	Field Records	(mOD)	(Thickness)	Legend	Description	Water	Ba	ckfill			
	55	44	21				(7.50)		Open Hole Boring, See XC219-CPRC01 for overburden details.	ing.					
							-	┝╌┼╌┤	Discontinuities: -Mostly non-intact Subparizental undulating smooth						
9.50 - 9.50					50 (25 for 0mm/50				-Subhorizontal, undulating, smooth.				9.5		
9.80					for 0mm)		- 9.80								
5.00		0						0-	Open Hole Boring, Drillers Description:						
Domorilia	TCR	SCR	RQD	FI					Continued on Next Page Water Added Wa	ater Strik	ke - Ge	neral			
Remarks									From (m) To (m) Struck at (m)	Casing to (r	m) Time	min) Ro	ose to (
									11.50 15.50	11.50 15.50	2		8.00 13.00		
										Chisellin					
									To (m) Diam (mm) From (m) 18.50 151		(m)	Time	(hh:m		
									18.50 151	1		l I			

6	-		*			Project			Name:		orehole	
C	<mark>),C</mark>			-		19-135			ne Level Crossings	X	C219-CPI	RC01A
	D	g	e ()		Coordi		Client:	Éireann / Irish Rail		Sheet 2	of 2
Method:					/	-	-		Representative:	s	cale: 1	.:50
Rotary Open+	Rota	ry Co	oring				Ν	JACOB:			oriller: N	
Plant:						Ground		Dates:	01/07/2020		ogger: II	
T44 Depth						Level	mOD Depth (m)		01/07/2020 -			1
(m)		JCK	RQD	FI	Field Records	(mOD)	(Thickness)	Legend	Description Boulder CLAY	Water	Backfil	10.5
										z	Z	11.5 - 12.0 12.5 -
13.00 - 13.45					N=24 (6,6/6,6,6,6)		- - - - - - - - - - -					13.0 — 13.5 -
							- - - - - - - - - - - - -					14.0 14.5 15.0
16.00 - 16.00					50 (25 for 0mm/50 for 0mm)					5	Z	15.5 16.0 -
17.50 - 17.50					50 (25 for 0mm/50 for 0mm)		- - - - - - - - -					17.0 17.5 18.0
18.50 - 18.50					50 (25 for 0mm/50 for 0mm)		- - - 18.50 -		End of borehole at 18.500m			18.5 -
							- - - - - - - -					19.0 - 19.5 ·
Remarks	TCR	SCR	RQD	FI					Water Added		ke - Genera	
nema Na										truck at (m) Casing to (r 11.50 11.50 15.50 15.50		
									Casing Details		20 ng Details	13.00
									Casing Details To (m) Diam (mm) 18.50 151			e (hh:mi
									161			

6			Ŵ			Project		Project			oreho	-	-
C	<u><u></u></u>			\sim		19-135 Coordi		Cork Li	ne Level Crossings		C219-	СРК	
	D	y	e	U					d Éireann / Irish Rail		Sheet	: 1 of	4
Method:						55320	1.13 E		s Representative:	s	ale:	1:50	0
	sion+F	Rota	ry O	pen+	-Rotary Coring	60984	8.01 N	JACOB		-		٨٨	
Plant:						Ground	d Level:	Dates:			riller:	<u>+N(</u> IH	<u>)</u>
Pilcon+T44						83.8	1 mOD		21/02/2020 - 19/03/2020	Lo	ogger	: <u>+M</u>	Ν
Depth (m)		ple / sts	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Bacl	cfill	
0.50 0.50 - 1.20	ES1 B2					83.31	(0.50) 0.50		Dark brown CLAY.	_		. 0).5
0.50 - 1.20 1.00 1.20 - 2.00 1.20 - 2.00	D3 ES4 B5 D6					82.61	(0.70)	X	subangular. Stiff brown slightly silty slightly gravelly sandy CLAY. Sand is fine to coarse Gravel is fine to medium, subangular to subrounded.				1.0
1.20 - 1.65 2.00 - 3.00	SPT N=2 B7				N=25 (3,5/7,7,5,6)	81.81	(0.80)		Firm to stiff brown slightly silty slightly gravelly sandy CLAY with medium			• 1	2.0
2.00 - 3.00 2.00 - 2.45	D8 SPT N=1				N=16 (3,3/3,4,4,5)		(1.00)		cobble content. Sand is fine to coarse. Gravel is fine to medium, subangular to subrounded.			2	<u>!</u> .
3.00 3.00 - 3.50 3.00 - 3.50	ES11 B9 D10					80.81	- 3.00		Very stiff to hard brown slightly silty slightly gravelly CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to medium, subangular to subrounded. Cobbles and boulders are subangula	r		3	\$.;
3.00 - 3.38 3.90 - 4.05	SPT SPT				N=85 (3,1/85 for 225mm) 50 (3,8/50 for 0mm) 50 (3,8/50 for 0mm)	79.91	(0.90) <u>3.90</u>		Medium Strong light to medium grey fine grained micritic LIMESTONE wit]	
.90 - 4.03	100	93	87	8	30 (3,8) 30 101 01111)	79.91			frequent irregular - shaped calcite veins and pockets (up to 30mm thick). Distinctly weathered with some yellowish brown discolouration and occasional cavities along calcite veins. Discontinuities: Closely to medium spaced, undulating rough.			• • 4 4 5	1
5.45	100	100	95	9							2	6	5
7.00							- (6.25)				Z	7	
	100	93	80	6								7	
3.60	99	75	61	10								8 9 9 9	•
10.15		00-				73.66	10.15		Medium Strong light to medium grey fine grained micritic LIMESTONE wit	h	· · · · · · · · · · · · · · · · · · ·	10).
Remarks	TCR	SCR	RQD	FI					Continued on Next Page Water Added Water	er Strik	e - Gene	ral	-
NETHOLKS									From (m) To (m) Struck at (m) Ca 1.10 3.40 1.10 6.90 6.90	sing to (m 1.10	 Time (m 20 20 	in) Rose 0. 5.). 1
able Percussion terr	minated	-+ 2 <i>4</i>)m du	e to pro	bable boulder obstruction. Re	otan/ Open	Hole technique	c amployed	To (m) Diam (mm) From (m) 3.40 200 3.20 152 3.30	niselling To (3.3 3.4	30	ime (hh 01:00 01:00	0

			8			Project	t No.:	Projec	t Name:	Bor	ehol	le N	o.:
) <mark>.C</mark>	; ,				19-135		Cork Li	ne Level Crossings	XC2	219-0	CPR	C02
	D		e	\mathbf{O}		Coordi	nates:	Client:		Sł	neet	2 0	f 2
		9			/	55320	1.13 E		l Éireann / Irish Rail				
Method:	ionu				Datam Caring	60984	8.01 N		s Representative:	Sca	le:		
	ion+r	total	γU	pen+	Rotary Coring			JACOB:		Dri	ller:		OB
Plant: Pilcon+T44							d Level: 1 mOD	Dates:	21/02/2020 - 19/03/2020	LOg	ger:	IH	
Depth	TCP	SCR	POD	E1	Field Records	Level	Depth (m)	Legend	Description	Water	Back	+N 611	IN
(m)		JCh	ΝQD		Field Records	(mOD)	(Thickness)	Legenu	frequent irregular - shaped calcite veins and pockets (up to 30mm thick).	Ň	Dack		_
									Distinctly weathered with some yellowish brown discolouration and			. 1	.0.5 —
									occasional cavities along calcite veins. Discontinuities: Medium spaced, undulating rough.				_
	100	90	63				(1.55)					. 1	1.0 -
				3						,			-
11.70				-		72.11	11.70					•	1.5 —
									Medium Strong light to medium grey fine grained micritic LIMESTONE with frequent irregular - shaped calcite veins and pockets (up to 30mm thick).			•	2.0
							-		Slightly weathered with frequent irregular - shaped calcite pockets (up to 60mm)			•	
	100	100	98				(1.55)		Discontinuities: Medium spaced, undulating rough.			1	2.5 —
													_
				1			-					• 1	3.0
13.25						70.56	13.25			-			-
									Medium Strong light to medium grey fine grained micritic LIMESTONE with frequent irregular - shaped calcite veins and pockets (up to 30mm thick).			1	3.5 —
									Slightly weathered with frequent irregular - shaped calcite pockets (up to 60mm)				-
	100	96	90	4			(1.65)		Discontinuities: Closely to medium spaced, undulating rough.			1	4.0
							()						_
							-					1	4.5 —
14.90						68.91	14.90						-
14.90						00.91	14.90		End of borehole at 14.900m			1	5.0 -
													-
												1	5.5 —
							-						_
												1	.6.0
												1	6.5 -
												ſ	-
												1	.7.0
													-
							-					1	7.5 —
							-						-
							-					1	.8.0
													_
												1	.8.5 —
													_
							-					1	9.0
													-
												1	9.5 —
													-
												2	0.0
													0.5 -
	TOP	SCR	BOR	-			-			\square			
Remarks	LICK	JUK	κųD	"		1			Water Added Water S				
									From (m) To (m) Struck at (m) Casing 1.10 3.40 1.10 1.7 6.90 1.00 1.90 1.00	g to (m) 1 10	Time (min 20 20		e to (m) 0.75 5.90
										elling D			
						boulder	obstruction	. Rotary	To (m) Diam (mm) From (m) Open Hole techniques employed to 3.40 200 3.20	To (m 3.30		01:	h:mm) 00
3.90m followed	l by Ro	otary	Cori	ng to	14.90m.				3.90 152 3.30	3.40		01:)0

(60	、 、	Å			Project		-	Name:		rehole	
	OC			\sim		19-135 Coordi		Cork Li	ne Level Crossings		219-CP	PRC0
	D	g	e	U	J				Éireann / Irish Rail	S	heet 1	of 2
Method:						55327	5.00 E		Representative:	Sci	ale: 1	.:50
	ussion+	Rota	ary O	pen+	Rotary Coring	60980	3.38 N	JACOB				
Plant:						Ground	d Level:	Dates:		_Dri	iller: A	<u></u> .А
Pilcon						85.72	2 mOD		24/02/2020 - 23/03/2020	Lo	gger: N	ЛN
Depth (m)		nple , ests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Backfill	1
0.05	ES1						-		TOPSOIL: Dark brown CLAY.	1		<u> </u>
							(0.50)					
0.50 0.50 - 1.20	ES2 B3					85.22	0.50	×	Brown slightly gravelly slightly sandy silty CLAY. Sand is fine to coarse.			0.5
0.50 - 1.20	D4						(0.70)	×	Gravel is fine to coarse, subrounded.			
1.00	ES5					04.52	1.20	×			~///20///	2 1.0 -
1.20 - 2.00 1.20 - 2.00	B6 D7					84.52	1.20	<u>x _ 0 </u>	Soft brown slightly sandy slightly silty gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to			
1.20 - 1.65	SPT N=6				N=6 (1,1/1,2,1,2)		(0.80)	<u>~~~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	subrounded. Cobbles are angular to subangular.			1.5 ·
		,						<u>x ~ ~ ~</u>				
2.00 - 2.50 2.00 - 2.18	B8 SPT				75 (17,21/75 for	83.72	2.00	<u>***</u>	Stiff brown slightly sandy slightly silty gravelly CLAY with high cobble	- _		2.0 -
2.00 - 2.16	571	(C)			30mm)		(0.50)	<u>~~~~</u>	content and medium boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles and boulders are angular to			
2.50 - 3.50	B9					83.22	2.50	<u>×0-×</u>	subangular.	<u></u>		2.5
2.50 - 3.50	D10)						<u>x ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</u>	Soft light brown slightly sandy slightly silty gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular			
3.00	ES1						(1.00)	<u>x</u>	to subrounded. Cobbles are angular to subangular.			3.0 -
3.00 - 3.45	SPT N=7	• •			N=7 (1,1/1,3,2,1)			<u>x</u>				
3.50 - 4.50	B11					82.22	3.50	<u>x</u>	Very stiff to hard light brown slightly sandy slightly silty gravelly CLAY with	_		3.5
3.50 - 4.50	D12	2						<u>~0~</u> 0~	medium cobble content and low boulder content. Sand is fine to coarse.			
4.00 - 4.34	SPT	(C)			N=95 (10,15/95 for		_	<u>~0~</u> 0~	Gravel is fine to coarse, subangular to subrounded. Cobbles and boulders are angular to subangular.			4.0 -
					185mm)			<u>~0~</u> 8-				
							(1.90)	<u>~~~~</u>				4.5
								<u>~0~</u> 0~				
5.00 - 5.08	SPT	(0)			50 (19 for 75mm/50		-	<u>~0~</u> 8-				5.0 -
5.00 5.00	511	(0)			for 0mm)			<u>~0~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				5.0
5.40 - 5.59 5.40 - 5.59	SPT	(C)			75 (3,9/75 for 75 (3,9/75 for 40mm)	80.32	5.40		Weak to Medium Strong light yellowish grey and light brown possibly	+		5.5
				7	40mm)		(0.36)		partially dolomitized fine grained micritic LIMESTONE.			5.5
						79.96	5.76		Distinctly to highly weathered with yellowish brown discoloration on cavi	ty		6.0 -
	80	25	25	NI					surfaces.			6.0 -
							(1.14)		Discontinuities: Very closely to closely spaced undulating rough.			
				6					Weak to Medium Strong light grey fine grained micritic LIMESTONE.			6.5
6.90						78.82	6.90		Distinctly weathered with some brown slightly sandy silty clay infilling and	t		
									brown discolouration on discontinuity surfaces. Occasional thin calcite veins and pockets up to 10mm wide.	1		7.0 -
									Discontinuities: Very closely to closely spaced, planar to undulating, rough	,//		
	98	58	44						Weak to Medium Strong light grey fine grained micritic LIMESTONE with	<u>ا</u> ۳		7.5
	50								occasional calcite veins and pockets up to 15mm wide.			
							<u>-</u>		Distinctly weathered with some yellowish brown discolouration on			8.0 -
8.40				20			(3.00)		discontinuity surfaces and along occasional stylolites.			
0.40				20			(3.00)		Discontinuities: Very closely to closely spaced. 1.: Subhorizontal, planar to undulating, rough.			8.5
									2.: Steep to subvertical, planar to undulating, rough.			
							-					9.0 -
	99	65	18									
												9.5
9.90		1				75.82	9.90	×	Soft yellowish brown slightly sandy slightly gravelly silty CLAY.	-		10.0 -
								×				
	TCR	SCF	RQD	FI					Continued on Next Page	<u> </u>		
Remarks									From (m) To (m) Struck at (m) Ca	sing to (m)		
									4.00 5.00 4.00	4.00	20	2.20
										niselling	Details	
									To (m) Diam (mm) From (m) 5.10 200 2.40 6.90 152 2.60	To (n 2.60 3.00		e (hh:mr 01:00 00:40
Cable Percussion	terminated	at 5.1	0m due	to pro	bable boulder obstruction. R	otary Open	Hole techniques	employed	to 5.90m followed by Rotary Coring to 11.40m. 6.90 152 2.60 4.50	3.00 5.00		00:40 00:45

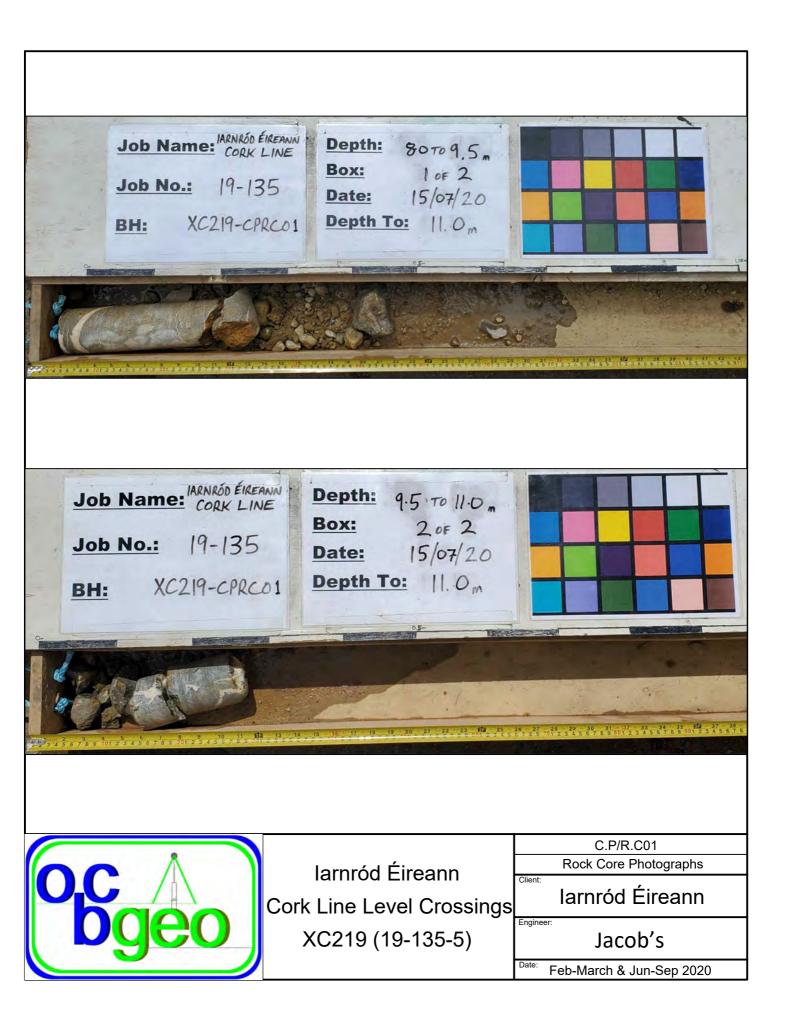
// _	-		٨			Projec		Project			orehole	
C) <mark>(</mark> C	,	/			19-135			ne Level Crossings	X	C219-CP	RCO
	D	C	e	0		Coordi	nates:	Client:	· · · · ·		Sheet 2 d	of 2
		0)	55327	6.00 E		Éireann / Irish Rail			
Nethod:	ion		n/ 0	nori	Potany Coring	60980	3.38 N		Representative:	So	cale: 1:	.50
	noli+t	าบเส	iy U	pen+l	Rotary Coring			JACOBS	,	D	riller: A	A
Plant: Pilcon							d Level: 2 mOD	Dates:	24/02/2020 - 23/03/2020		ogger: M	1N
Depth						Level	2 mOD Depth (m)					
(m)	TCR	SCR	RQD	FI	Field Records	(mOD)	(Thickness)	Legend	Description	Water	Backfill	
11.40	67	0	0	NI		74.42 74.32	(1.40)		Medium Strong light grey fine grained LIMESTONE. End of borehole at 11.400m			10.5 11.0 12.5 13.0 14.0 14.5 15.5 15.0 15.0 15.0 15.0 15.0 15.0 15
												18.5
												19.
												20. 20.
	TCR	SCR	RQD	FI			[t
emarks				<u> </u>					From (m) To (m) Struck at (m) 4.00 5.00 4.00	Casing to (n 4.00		ose 1 2.:
able Percussic	on terr	mina	ted a	nt 5 10)m due to probabl	e boulder	obstruction	. Rotary	Casing Details To (m) Diam (mm) From (m 5.10 200 2.40	Chisellin	(m) Time (
					11.40m.	c bouidel	obsti uctiOfi	. NOLALY	Open Hole techniques employed to 5.10 200 2.40 6.90 152 2.60	2.0)1:00)0:40

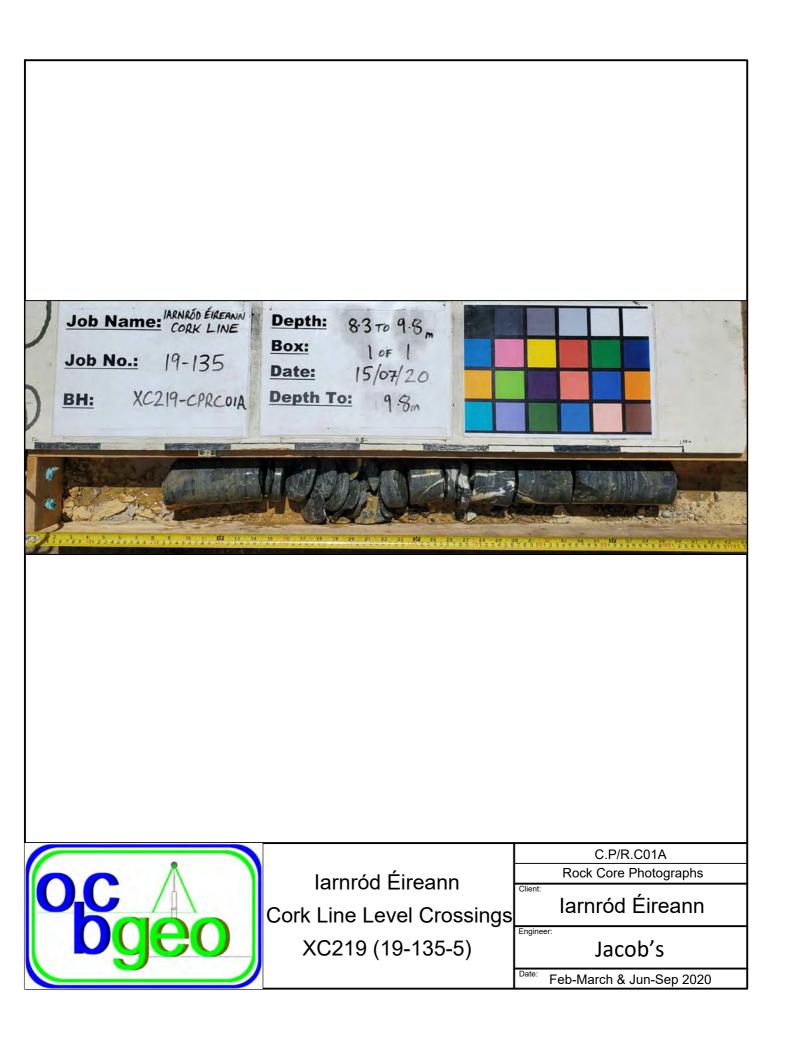
			Λ			Project		Project	ne Level Crossings	vr	219	-CP	No.
	K					Coordi		Client:	-				
l	J	y	C	J	J	55334			l Éireann / Irish Rail	S	hee	t 1	of
Vethod:						1			s Representative:	Sci	ale:	1	:50
Cable Percuss	ion+F	Rota	ry O	oen+	Rotary Coring	60980	6.33 N	JACOB			iller	A	A
Plant:						Ground	d Level:	Dates:				+	NC
Pilcon+T44	1-						5 mOD		20/02/2020 - 13/03/2020		gger	∵ N	1N
Depth (m)		ple / sts	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Bac	kfill	
0.00 - 1.20 0.00 - 1.20 0.05 0.50	B4 D5 ES1 ES2					88.25	(0.20) 0.20		MADE GROUND: Granular fill material. Clause 804 angular gravel Brown slightly sandy slightly silty gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles are angular to subrounded.	-			0.
00 20 - 2.00	ES3 B6					87.25	(1.00)						1.
l.20 - 2.00 l.20 - 1.58	D7 SPT	(C)			N=73 (1,1/73 for 225mm)		(1.10)	<u>x 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 </u>	Very stiff orange brown slightly sandy slightly silty gravelly CLAY with medium cobble content and medium boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles and boulders are subangular to subrounded.				1.
2.00 - 2.12	SPT	(C)			50 (46 for 115mm/50 for			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					2.
2:38 - 2:38	SPT		10	12	9mm) 50 (25 for 8mm/58 for 8mm)	86.15	2.30		Strong light grey fine grained micritic LIMESTONE with occasional irregular calcite pockets and fossil debris including crinoid ossicles. Distinctly weathered with light yellowish brown discolouration along open and incipient discontinuities. and yellowish brown clay infill of discontinuities.				· 2.!
3.70	91	62	49	12			(1.90)		Discontinuities are mostly closely to medium spaced. Mostly planar to undulating rough.				3.1 3.1
	100	06	0.5	4		84.25	4.20		Strong light grey fine grained micritic LIMESTONE with occasional irregular calcite pockets and fossil debris including crinoid ossicles.	_			, 4. ,
	100	96	96	2					Slightly weathered with light yellowish brown discolouration along open and incipient discontinuities and occasional to frequent irregular calcite pockets and veins. Clay infill of discontinuity at 5.30m. Discontinuities are mostly medium spaced. Mostly planar to undulating rough.				> 4
5.25	99	97	97				(2.50)						5
6.70				3		81.75	6.70		Strong light grey fine grained micritic LIMESTONE with occasional irregular calcite pockets and fossil debris including crinoid ossicles.	-			6
	89	86	86				(1.55)		Unweathered to slightly weathered with light yellowish brown discolouration along open and incipient discontinuities and occasional to frequent irregular calcite pockets and veins. Discontinuities are mostly medium to widely spaced. Subhorizontal undulating rough.				, 7. , , , , , , , , , , , , , , , , , , ,
8.25						80.20	8.25		End of borehole at 8.250m	_			* 8 *
													8
													ġ
	TOP	805	RQD	FI			- - - - - - - -						10
Remarks Flush lost dowr						<u> </u>	1	<u> </u>	Water Added Water From (m) To (m) Struck at (m) Casing				ose
									Casing Details Chis To (m) Diam (mm) From (m) 2.00 2.00 2.00	elling To (n 2.00	n)	Time	(hh

6			٨			Project		-	t Name:				No.
C	<mark>ال</mark> ا	, ~		~		19-135			ne Level Crossings		219	9-CF	PRCO
	D	g	e	U	J	Coordi		Client:	d Éireann / Irish Rail	5	Shee	et 1	of 2
Method:					/	55333	7.58 E		s Representative:		ale	1	:50
	sion+F	Rota	ry O	pen+	Rotary Coring	60979	1.07 N	JACOB:					
Plant:				•		Ground	d Level:	Dates:		_Dr	ille	••	<u>NO</u>
Pilcon+T44							2 mOD		18/02/2020 - 11/03/2020	Lo	gge	r: N	ЛN
Depth (m)	Sam	ple / sts	Casing Depth	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Ва	ckfil	ı
0.05	ES1	SIS	(m)	(11)			(0.20) 0.20		MADE GROUND: Granular fill material. Clause 804 angular gravel.				
0.20 - 1.20 0.20 - 1.20	B4 D5					88.12	0.20		Light brown slightly sandy slightly silty gravelly CLAY with low cobble				
0.50	ES2							α <u>~</u> ∘	content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles are subangular to subrounded.				0.5
							(1.00)	<u>α</u> ο					
1.00	ES3						 -	<u>x ° × o</u>					1.0
1.20 - 2.00 1.20 - 2.00	B6 D7					87.12	1.20	<u>x</u>	Stiff light brown slightly sandy slightly silty very gravelly CLAY with medium	-			
1.20 - 1.65	SPT				N=16 (2,1/2,3,4,7)		-	<u>x ° × o</u>	cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular. Cobbles are subangular.				1.5
	N=1	0					(1.20)	x <u>~ ~</u> ~					
2.00 - 2.15	SPT	(C)			50 (11,18/50 for		<u>-</u>	<u>x ~ ~ 0</u>					2.0
240 240		(C)			0mm)		2.40	<u>x 0 0 0</u>					
2:48 - 2:48	SPT	(C)			50 (25 for 0mm/50 50 (25 for 0mm/50 for 0mm) for 0mm)	85.92	2.40		Strong light grey fine grained micritic LIMESTONE with occasional wavy stylolites.	T	• •		2.5
									Slightly weathered with some lighter coloured discolouration on				
	100	93	83						discontinuity surfaces. Clay infill of discontinuities up to 3.40m. Discontinuities are closely to medium spaced, planar to undulating, rough.			=	3.0
	100	93	03										•
									-	-			3.
							(2.65)		-				
3.90													4.
									-				
	100	96	96	4									4.
5.05						83.27	5.05		Strong light grey fine grained micritic LIMESTONE with occasional wavy	_			5.0
							-		stylolites.				
							(1.05)		Slightly weathered with some lighter coloured discolouration on discontinuity surfaces.				5.5
	99	95	95				(Discontinuities are closely to widely spaced, planar to undulating, rough.		•		
						82.22	6.10						6.0
						02.22	(0.50)		Strong light grey fine grained micritic LIMESTONE with occasional wavy stylolites.				
6.60						81.72	6.60		Slightly weathered with some lighter coloured discolouration on				6.5
0.00						01.72	0.00		discontinuity surfaces. Discontinuities are medium to widely spaced, planar to undulating, rough.		· · · · ·		
							-		Strong light grey fine grained micritic LIMESTONE with occasional to some fossil debris (primarily crinoid ossicles) and occasional black wavy		••••		7.0
	100	100	07	3					stylolites.				
	100	100	97	3					Slightly weathered with occasional light yellowish brown discolouration on discontinuity surfaces.				7.5
									Discontinuities are medium to widely spaced, planar to undulating, rough.				
0.45													8.0
8.15					1								
							(6.50)						8.5
									4				
	100	94	86	3			-		-				9.0
									1				
									1				9.5
9.75	-				-								
							-						* * 10.0
	TCR	SCR	RQD	FI					Continued on Next Page Water Added Water	r Strike	- 60	Ieral	
Remarks									From (m) To (m) Struck at (m) Cash 1.50 2.00 3.40 3.40 3.40			(min) R	Rose t
									1.50 2.00 540				0.0
									Casing Details Chi To (m) Diam (mm From (m)	iselling To (r			e (hh:r
									2.00 200 ^{1.50}	2.00)		02:00
able Percussion ter	minated	at 2.0	0m due	e to beo	drock obstruction. Rotary Op	en Hole tech	niques employe	ed to 2.40m	followed by Rotary Coring to 13.00m.				

						Project	t No.:	Project	t Name:	Во	rehol	e No.:
C).C		\mathbb{A}			19-135		Cork Li	ne Level Crossings	xc	219-0	PRC05
	D	C	e			Coordi	nates:	Client:		5	sheet :	2 of 2
				_	/	55333	7.58 E		l Éireann / Irish Rail			
Method: Cable Percuss	ion+F	Rotar	~v 0i	oen+	Rotary Coring	60979	1.07 N	JACOB	s Representative:		ale:	1:50 AA
Plant:			/ 1		, 0	Ground	d Level:	Dates:		Dr		HNOB
Pilcon+T44							2 mOD		18/02/2020 - 11/03/2020	Lo	gger:	MN
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Backf	ill
Depth (m)	100	90 96 100	90 96	3	Field Records	Level (mOD)	Depth (m) (Thickness)		End of borehole at 13.100m	Water	Backf	10.5
												17.5 — — — 18.0 — — 18.5 — — — — — — — — — — — — — — — — — — —
												19.5
Remarks	ICR	SCR	ĸQD	FI							- Genera	
						obstructio	on. Rotary C	Dpen Hol	From (m) To (m) Struck at (m) Casing 1.50 2.00 3.40 3.40	g to (m)	Time (min) 0 Details n) Tin	

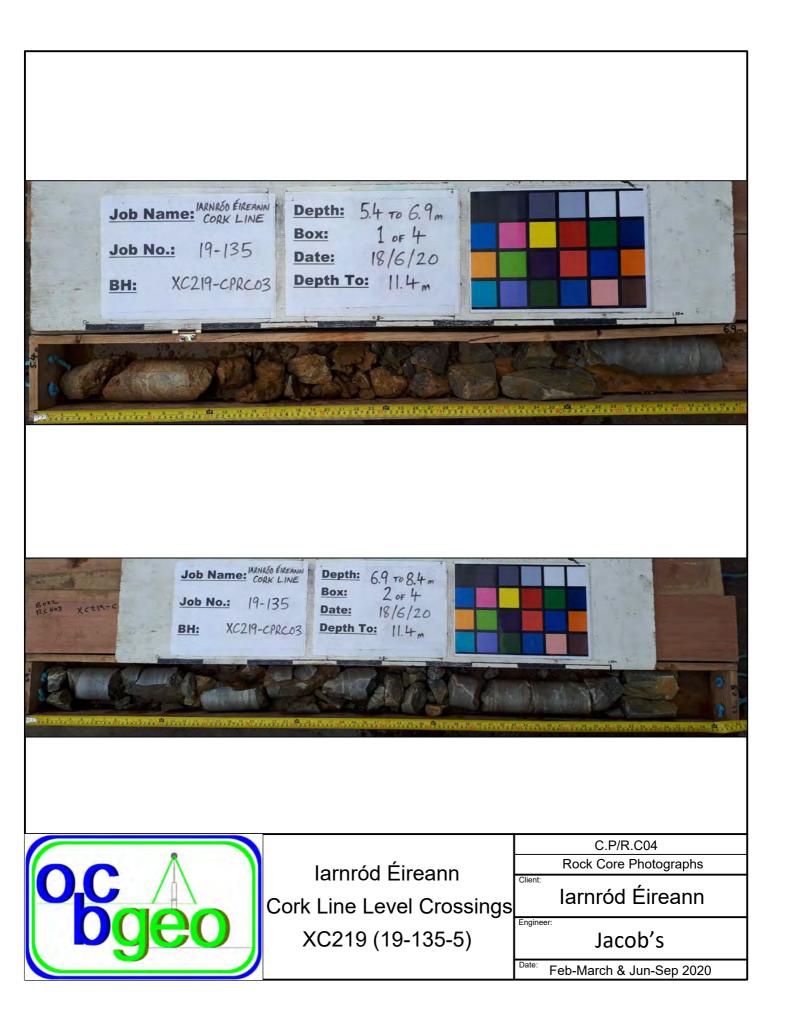
		, /	/ ft 🔪 -			19-135			ne Level Crossings	1 X L	C219-CF	
						C			-			RU
	D	g	e	J		Coordi		Client:	l Éireann / Irish Rail	9	Sheet 1	of 2
Vethod:					,	55325	9.99 E		s Representative:	50	ale: 1	.50
Rotary Open+	Rotar	y Co	oring			60981	4.04 N	JACOB		_		
Plant:						Ground	d Level:	Dates:		_ Dr	riller: N	10B
[44						85.0	0 mOD		13/08/2020 - 13/08/2020	Lo	gger: N	٨N
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Backfil	
(m)				-		(mod)	(1 nickness)		Hand Dug Inspection Pit to 1.2m.			3
						84.70	0.30		Driller describes: TOPSOIL Hand Dug Inspection Pit to 1.2m.	_		2
							-		Driller describes: Sand and Gravel			0.5
							(0.90)					
							-					2 1.0
						83.80	1.20		Rotary Open Hole Drilling:			
									Driller describes: Sand, Gravel, Boulders			1.5
							-					
							_ (1.50)	0.0000				2.0
							-	0 0 0 0 0 0 0 0 0				
							-	0 0 0 0 0 0 0 0 0				2.5
						82.30	2.70	۰۰۰۰۰ ۲-۰۰	Rotary Open Hole Drilling:	-		
							-	ے میں میں میں	Driller describes: Boulder with Sand and Clay			3.0
								ے میں میں میں				
							(1.50)	ے مح مح ^ہ م				3.5
							-	ے مے مے ہے				
							-	ے مے مے ہے				4.
						80.80	4.20		Patan: Onen Liela Drilling:	_		
								 	Rotary Open Hole Drilling: Driller describes: Clay with Sand and Gravel			4.
							(1.10)			T	-	
							- (1.10)					5.0
							-					
						79.70	- 5.30		Medium strong light grey and yellowish brown to brown partially dolomitised micritic LIMESTONE with frequent irregular-shaped white			5.5
				NI			(0.85)		calcite veins / pockets.			
									Distinctly weathered with much yellowish brown discolouration locally			6.0
	100	39	11	_		78.85	6.15		penetrating from discontinuity surfaces and with a little sandy gravelly silt clay infilling.	у		0.0
							-					6.5
				12			(0.85)		Discontinuities: Very closely to closely spaced multiple orientations but commonly			6.5
5.80						79 00	- 7.00		subhorizontal and subvertical, planar to undulating, rough. Strong light grey fine grained micritic LIMESTONE with occasional thin			
						78.00	- 7.00		calcite veins and frequent wavy stylolites.			7.0
							F		Distinctly weathered with much yellowish brown discolouration along			
	100	67	50				-		stylolites and some discontinuities and some brown sandy gravelly silty Clay infilling.			7.
				8			-		Discontinuities:			
									Very closely to closely spaced. commonly subhorizontal and subvertical,			8.0
3.30	-						(2.80)		planar to undulating, rough.			
							-		Strong light grey fine grained micritic LIMESTONE with occasional thin calcite veins and irregular shaped pockets and occasional, locally frequent			8.
							-	╞╧┰╧┙	wavy stylolites.	´		
	70	63	63				-		Distinctly weathered with yellowish brown discolouration along stylolites			9.
				3			-		and some discontinuity surfaces. Becoming less weathered with depth.			
							F	╞┼╌┼┙	Discontinuities:			9.5
9.80				-		75.20	9.80	╞╧┯╧╸	Closely up to to medium spaced. 1.) Subhorizontal to subangular, planer to undulating rough.			
	TCR	SCR	RQD	FI			_		Continued on Next Page			1
emarks									From (m) To (m) Struck at (m) Cas	ing to (m)		Rose t
									4.70	4.70	20	4.7
									Casing Details Chi To (m) Diam (mm) From (m)	iselling To (I	g Details	e (hh:
									10 (m) Diam (mm) From (m) 5.30 151 11.30 101	10 (1		. (00)


6			6			Project	t No.:	Project	t Name:	B	oreho	ole No.:
C			\mathbb{A}			19-135			ne Level Crossings			-CPRCO
	h			ר		Coordi	nates:	Client:			сь - ·	12-52
		J			J	55325			l Éireann / Irish Rail		sneet	t 2 of 2
Method:						1			s Representative:	Sc	ale:	1:50
Rotary Open+	Rotar	гу Сс	oring			60981	4.04 N	JACOBS			riller	NOB
Plant:							d Level:	Dates:				
T44		-					0 mOD		13/08/2020 - 13/08/2020			: MN
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Bac	kfill
()						(-		2.) Steep to subvertical planar rough,			
									3.) 45° - 65° planar to undulating, rough.			
							-					10.5
							-					
							_					11.0 -
							-		End of boscholo at 44,200m			
							-		End of borehole at 11.300m			11.5
							-					
							-					12.0 -
							Ē					
							ŀ					12.5
							ŀ					
							-					13.0 -
							-					13.0
							-					
												13.5
							-					
							-					14.0 -
							-					
							-					14.5
							-					
							-					15.0 -
							-					15.5
							-					
							[16.0 -
							-					
							-					16.5
							-					10.5
							-					
							-					17.0 -
							-					
							-					17.5
							 -					18.0 -
							F					
							-					18.5
							ŀ					
							-					19.0 -
							-					19.5
							F					
	TCR	SCR	RQD	FI					Water Added Wat	er Strik	e - Gen	eral
lemarks									From (m) To (m) Struck at (m) 6			nin) Rose to
									4.70	4.7U	20	4.70
										hisellin		
									To (m) Diam (mm) From (m) 5.30 151 11.30 101	To (m)	Time (hh:m
otary Open Ho	pie Dri	IIIIng	to 5.	зт fc	ollowed by Rotary Co	oring.			11.50 101			


						Project	t No.:	Project	t Name:	Во	rehole	e No.:
	.C	,	\mathbb{A}			19-135		Cork Li	ne Level Crossings	xc	219-C	PRC07
	b		e	\mathbf{O}		Coordi	nates:	Client:		S	heet 1	l of 2
		9)	55328	3.99 E	larnróc	l Éireann / Irish Rail			
Method:						60082	1.03 N	Client's	s Representative:	Sca	ale:	1:50
Rotary Open+R	Rotai	ry Co	oring	5				JACOB:	5	Dri	iller:	NOB
Plant: T44							d Level:	Dates:	10/00/2020 10/00/2020		gger:	
Depth		1	1			Level	6 mOD Depth (m)		19/08/2020 - 19/08/2020	-		
(m)	TCR	SCR	RQD	FI	Field Records	(mOD)	(Thickness)	Legend	Description	Water	Backfi	11 777 —
							-		Rotary Open Hole Drilling: Driller describes: Topsoil with sandy CLAY		X	翁 -
							_				X	0.5
							- (1.20)				X	× =
							-				Ì	2 <u>10</u>
						84.46	1.20		Potany Open Hele Drilling:			-
									Rotary Open Hole Drilling: Driller describes: Slightly clayey SAND with boulders.			1.5 —
							-	00				-
							-	000				-
							-	000				2.0
							(2.50)	000				-
							(2.50)	000				2.5
							-					-
							-					3.0
							-	000				-
						01.00	-	000				3.5 —
						81.96	- 3.70		Very low recovery.			
							-		Medium strong, light grey, micritic LIMESTONE.			4.0 -
									Distinctly weathered (Completely destructured locally) with much brown			-
	40	14	9				-		sandy, slightly gravelly clay infill and staining and occasional yellow / orange oxide staining.			4.5 —
							-					-
							-		Discontinuities: Completely non-intact			5.0 -
5.20				NI			- (3.00)					-
												5.5 -
							-					-
	7	0	0									6.0
							-					-
							-					6.5 -
6.70						78.96	6.70		Strong to very strong light grey micritic LIMESTONE with some thin calcite			-
							-		veining.			7.0
							(1.20)		Partially weathered with occasional brown clay staining and orange oxide			
	87	80	69	7			-	╞┼┰┼┙	staining on discontinuity surfaces.			7.5 —
							-		Discontinuities: 1.) Subhorizontal - 15°, undulating, rough, closely spaced.			
						77.76	- 7.90		2.) 60° - 75°, undulating, smooth, medium spaced.	1		8.0
8.20	<u> </u>						-		Medium strong to strong, light grey micritic LIMESTONE.			
							(1 20)		Distinctly weathered with some brown clay infill and staining, some orange oxide staining on discontinuity surfaces and occasional calcite veins which			8.5 —
				NI			(1.30)	[]	have ben weathered out and replaced with orange oxide.			
	93	53	40				-	[]	Discontinuities:			9.0
						76.46	9.20		Mostly subhorizontal, undulating, rough extremely closely to very closely spaced.			-
				3			(0.50)		As 6.7m - 7.9m:			9.5 —
9.70	<u> </u>					75.96	9.70		Strong to very strong light grey micritic LIMESTONE with some thin calcite			-
							-					
Pomorka	TCR	SCR	RQD	FI					Continued on Next Page Water Added Water S	trike	- Gener	al
Remarks									From (m) To (m) Struck at (m) Casing			
									Casing Details Chise To (m) Diam (mm) From (m)	elling To (m	Details	ne (hh:mm)
Rotary Open Ho	le Dr	illinø	to २	.7m f	ollowed by Rotary Co	oring			3.70 151 9.70 101			
		g				·····b·						

C			*			Project			t Name:		orehole	
	<mark>),C</mark>					19-135		Cork Li	ne Level Crossings	X	С219-С	PRC0
	D		e			Coordi	nates:	Client:			Sheet 2	of 2
		3)	55328	3.99 E		l Éireann / Irish Rail			
Method:		-				60982	1 02 N		s Representative:	Sc	ale:	1:50
Rotary Open	+Rotar	y Co	oring			60982	1.03 N	JACOBS	S	Dr	iller:	NOB
Plant:							d Level:	Dates:		-		
[44			1				6 mOD		19/08/2020 - 19/08/2020	_	gger:	Н
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Backfi	п
									veining.		1	
							-		Partially weathered with occasional brown clay staining and orange oxide			
							-		staining on discontinuity surfaces.			10.5
							-		Discontinuities:			
									 Subhorizontal - 15°, undulating, rough, closely spaced. 60° - 75°, undulating, smooth, medium spaced. 			11.0 -
									End of borehole at 9.700m			
							-					11.5
							-					
							-					
							Ľ					12.0 -
							-					
							-					12.5
							-					
							-					13.0 -
							-					
							-					13.5
							-					
												14.0 -
							-					14.0
							-					
							-					14.5
							-					15.0 -
							-					
							-					15.5
							-					
							-					16.0 -
							-					
							-					
							E					16.5
							-					
							-					17.0 -
							-					
												17.5
							-					
							-					18.0 -
							-					
							E					18.5
							-					10.5
							-					
							-					19.0 -
							ŀ					19.5
							-					
	TOP	807	800				-			_		
emarks	TCR	SCR	RQD	FI					Water Added Water	 Strike	e - Genera	al
									From (m) To (m) Struck at (m) Casin			
											Details	e (hh:m
									To (m) Diam (mm) From (m) 3.70 151 9.70 101	To (iii) lim	ະ (ແມ່ງມີ
otary Open H	iole Dri	Iling	to 3.	/m fc	llowed by Rotary Co	oring.			5.70 101			


	_		8			Project		Project	Nume.	100	renoie	No.
) <mark>.</mark> C	/				19-135		Cork Lii	ne Level Crossings	XC	219-CP	'RC0
	D		20			Coordi	nates:	Client:			Sheet 1	of 1
		9)	55329	3.67 E		Éireann / Irish Rail	F		
Method:							609800.39 N		Client's Representative:			.:50
Rotary Open+Rotary Coring Plant:						00980	0.59 N	JACOBS			iller: N	JOB
						Ground Level:		Dates:				
T44						_	3 mOD		08/09/2020 - 09/09/2020	_	gger: ⊪	-
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Vater	Backfill	I
						85.43	(0.20) 0.20		Rotary Open Hole Drilling:			-
						85.45	0.20		Driller describes: TOPSOIL Rotary Open Hole Drilling:	1		
							-		Driller describes: MADE GROUND, Clause 804 fill.			0.5
							- (1.00)					
							F					1.0
						84.43	1.20		Rotary Open Hole Drilling:			
							-	0° 0	Driller describes: Sandy GRAVEL with boulders.			1.5
							(1.00)	0° 0				
							_	0.0				2.0 -
						83.43	2.20	$\overline{\bigcirc}^{0}$	Deters Onen Hele Deilling.			
						-	-	× 8 ×	Rotary Open Hole Drilling: Driller describes: Clayey SAND with Boulders			
							E	\times $^{\circ}$				2.5
							-	\times \circ \times				
							-	$\mathcal{O}_{\mathcal{X}}^{\mathcal{O}}$				3.0 -
							-					
												3.5
							- (3.20)	$\mathcal{O}_{\mathcal{X}}^{\mathcal{O}}_{\mathcal{V}}^{\mathcal{O}}_{\mathcal{X}}^{\mathcal{O}}_{\mathcal{V}}^{\mathcal$				
							-	$\mathcal{O}_{\mathcal{X}}^{\mathcal{O}}$				4.0
								Ŏx°`×				
							-	$O_{\times}O_{\times}$				4.5
							-	\circ				
							-	$\mathcal{O}_{\times}^{\times}\mathcal{O}_{\times}^{\circ}$:	
							F	$\circ \times \circ$				5.0 -
						80.23	- 5.40	\dot{O}	Light grey strong LIMESTONE with occasional calcite veining.	_		
				NI								5.5
				2			-		Partially to distinctly weathered with some grey sandy clay staining and infill of discontinuity surfaces, occasional orange oxide staining and some			
	93	68	68	NI			-		localised zones of weakness.			6.0
	55	00	00				-		Discontinuities:			
				6			[1.) ~45° Planar, smooth, medium spacing.			6.5
							-		2.) Subhorizontal, planar, smooth, very closely spaced.			
6.90							È					7.0 -
				1			-					
							-					7.5
	100	79	47				(4.50)					
				NI			-					8.0 -
							-					
8.40	-						Ē					
							-					8.5
							-					
	90						-					9.0 -
							F	┝┸┯┸╹				9.5
							-	[+++]				
9.90	TCR	SCR	RQD	FI		75.73	- 9.90		End of borehole at 9.900m	1		+
Remarks	TOR	501					1	I			- General	
									From (m) To (m) Struck at (m) Casin 4.90 -	ng to (m) 4.90	Time (min) Ro 20	Rose to 0.00
										- 111	Det "	
									Casing Details Chis To (m) Diam (mm) From (m) 5.40 151	selling To (r	Details n) Time	e (hh:m


Appendix C Rock Core Photographs

