

## BRE Test Suite B - Greenfield Site

| Project:       | Cork Line Level Crossings | Job No.:          | 19-135       |
|----------------|---------------------------|-------------------|--------------|
| Client:        | OCB Geotechnical          | Lab Ref. No.:     | ST 93430     |
|                | Unit 1 Carrigogna         | Date Received:    | 09/03/2020   |
|                | Midleton                  | Date Reported:    | 08/04/2020   |
|                | Co. Cork                  | Material:         | Soil         |
| Order No.:     | 2003-104                  | Date Tested:      | 07/04/2020   |
| Originator:    | Ian Holley                | Specification:    | Client       |
| Sample Details | XC219-CPRC02 T            | ype D Sample 6    |              |
| Supplier:      | Client Info               | Date of Sampling: | Client Info. |
| Source:        | Client Info               | Sampled By:       | Client       |
| Sample Locatio | on: 2.0-3.0m              | Sampling Reason:  | Request      |

| Parameter                             | RESULT |
|---------------------------------------|--------|
| рН                                    | 8.1    |
| Sulphate Aqueous Extract (SO4) (mg/l) | 11     |
| Sulphur as S, Total (%)               | 0.01   |
| Sulphate as SO4, Total (%)            | 0.01   |

### Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full. Tested in accordance with the above specifications Subcontracted to a laboratory UKAS accredited for this testing

SL

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD.

□ James Ward, Operations Manager





## MOISTURE CONTENT BS 1377 : Part 2 : 1990 Oven Drying Method cl 3.2

| Site:         | Cork Line Leve | el Crossings |               | Job No.:      | 19-135                       |
|---------------|----------------|--------------|---------------|---------------|------------------------------|
| Client:       | OCB Geotech    | nical        |               | Lab Ref No.:  | ST 93428                     |
|               | Unit 1 Carrigo | gna          |               | Date Receive  | <b>d:</b> 09/03/2020         |
|               | Midleton       |              |               | Date Tested:  | 27/03/2020                   |
| Order No:     | 2003-104       |              |               | Date Reporte  | ed: 02/04/2020               |
| Originator:   | lan Holley     |              |               | Specification | : Client                     |
| Sampled Ref:  |                | XC219-CPRC0  | 2 Type D Samp | ole 6         |                              |
| Sample Type:  |                | Bulk         | Location:     |               | XC219-CPRC02 Type D Sample 6 |
| Date Sampled: |                | Client Info  | Sample by:    |               | Client                       |
| Depth:        |                | 2.0-3.0m     | Material Type | e:            | Soil                         |

Moisture Content (%):

Tested in accordance with BS 1377: Part 2: 1990 Sample preperation by cone and quarter

5.9

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.



James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager



Page 1 of 1



## LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

| Site Ref.:                     | Cork Line Level Crossings | Job No.:       | 19-135                           |
|--------------------------------|---------------------------|----------------|----------------------------------|
| Client:                        | OCB Geotechnical          | Lab Ref No.:   | ST 93429                         |
|                                | Unit 1 Carrigogna         | Sample Ref.:   | XC219-CPRC02 2.0-3.0m Type D S.6 |
|                                | Midleton                  | Date Sampled:  | Client Info                      |
|                                | Co Cork                   | Date Received: | 09/03/2020                       |
| Order No:                      | 2003-104                  | Date Tested:   | 02/04/2020                       |
| Originator:                    | Ian Holley                | Date Reported: | 22/04/2020                       |
|                                |                           |                |                                  |
| Sampling Certific              | ate                       | No             |                                  |
| Sampled By                     |                           | Client         |                                  |
| Sample Type                    |                           | Bulk           |                                  |
| Sample Preparat                | ion Method                | Washed         |                                  |
| MATERIAL                       |                           | Soil           |                                  |
| Retained 425 mic               | cron (%)                  | 22             |                                  |
| Natural Moisture               | e Content (%)             | 10             |                                  |
| Liquid Limit (single point)(%) |                           | 17             |                                  |
| Plastic Limit (%)              |                           | Non-Plastic    |                                  |
| Plasticity Index               |                           | N/A            |                                  |



The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager



James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561 Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

RS70 Issue 2



| Detern              | nination  | Determination of Particle Size Determination (Hydro | Distribution - BS 1377 | ' : Part 2 : 19<br>m) - BS 1377 | 990<br>' : Part 2 : 1990 Cl. 9.5 |
|---------------------|-----------|-----------------------------------------------------|------------------------|---------------------------------|----------------------------------|
| Project:            | Cork Lin  | e Level Crossings                                   | Job No:                | , 00 10//                       | 19-135                           |
| Client              |           |                                                     | Lab Rof No.            |                                 | ST 02427                         |
| client:             |           |                                                     |                        |                                 | 31 93427                         |
|                     | Unit 1 C  | arrigogna                                           | Date Received:         |                                 | 09/03/2020                       |
|                     | Midleto   | n                                                   | Date Reported:         |                                 | 02/04/2020                       |
|                     |           |                                                     | Date Tested:           |                                 | 01/04/2020                       |
| Order No:           | 2003-10   | 4                                                   | Material:              |                                 | Soil                             |
| Originator:         | Ian Holle | 29                                                  | Visual Description     | Large C                         | obble, Dark Clay, Sandy          |
|                     |           |                                                     | BS Sieve               | %                               | Specification                    |
| Client Ref.         |           | XC219-CPRC02 Type B Sample 5                        | Size                   | Passing                         |                                  |
|                     |           |                                                     | 300 mm                 | 100                             |                                  |
|                     |           |                                                     | 125 mm                 | 100                             |                                  |
| Location            |           | XC219-CPRC02 Type B Sample 5                        | 100 mm                 | 62                              |                                  |
| Location:           |           |                                                     | 75 mm                  | 45                              |                                  |
|                     |           |                                                     | 63 mm                  | 45                              |                                  |
| Supplier:           |           | Bulk                                                | 50 mm                  | 45                              |                                  |
|                     |           | Baik                                                | 37.5 mm                | 32                              |                                  |
| Source:             |           | Client Info.                                        | 28 mm                  | 31                              |                                  |
|                     |           |                                                     | 20 mm                  | 29                              |                                  |
| Depth (m):          |           | 2.0-3.0m                                            | 14 mm                  | 28                              |                                  |
|                     |           |                                                     | 10 mm                  | 26                              |                                  |
| Sampling Re         | ason:     | Client Request                                      | 6.3 mm                 | 24                              |                                  |
|                     |           |                                                     | 2 25 mm                | 22                              |                                  |
| Sampled By:         | :         | Client                                              | 2 mm                   | 18                              |                                  |
| c                   |           |                                                     | 1.18 mm                | 17                              |                                  |
| Specification:      |           | Client                                              | 0.6 mm                 | 15                              |                                  |
| Droporation Mathed  |           | Without Organics Proparation                        | 0.425 mm               | 15                              |                                  |
| Preparation Method: |           | without organics rreparation                        | 0.3 mm                 | 14                              |                                  |
| Notes:              |           | Disturbed sample from cleanout                      | 0.15 mm                | 12                              |                                  |
|                     |           | Disturbed sample from cleanout                      | 0.063 mm               | 10                              |                                  |
|                     |           |                                                     | 0.020 mm               | 9                               |                                  |
|                     |           |                                                     | 0.006 mm               | 5                               |                                  |
|                     |           |                                                     | 0.003 mm               | 4                               |                                  |
|                     |           |                                                     | 0.002 mm               | 3                               |                                  |
|                     |           |                                                     | 0.001 mm               | 2                               |                                  |

## LABORATORY TEST REPORT



Tested III accordance with BS 1577. Part 2 . 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full. Sedimentation by Hydrometer - Not UKAS

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD.





| Detern              | nination  | Determination of Particle Size D<br>of Particle Size Distribution (Hydro | Distribution - BS 1377 | ' : Part 2 : 19<br>m) - BS 1377 | 990<br>7 · Part 2 · 1990 CL 9.5 |  |
|---------------------|-----------|--------------------------------------------------------------------------|------------------------|---------------------------------|---------------------------------|--|
| Project:            | Cork Lin  | e Level Crossings                                                        | Job No:                | 19-135                          |                                 |  |
| Client              |           |                                                                          | Lab Dof No.            |                                 | ST 02421                        |  |
| client:             |           | Diecinical                                                               |                        |                                 | 31 93431                        |  |
|                     | Unit I C  | arrigogna                                                                | Date Received:         |                                 | 09/03/2020                      |  |
|                     | Midleto   | n                                                                        | Date Reported:         |                                 | 02/04/2020                      |  |
|                     |           |                                                                          | Date Tested:           |                                 | 01/04/2020                      |  |
| Order No:           | 2003-10   | 4                                                                        | Material:              |                                 | Soil                            |  |
| Originator:         | Ian Holle | 29                                                                       | Visual Description     | Large C                         | obble, Dark Clay, Sandy         |  |
|                     |           |                                                                          | BS Sieve               | %                               | Specification                   |  |
| Client Ref.         |           | XC219-CPRC02 Type B Sample 7                                             | Size                   | Passing                         |                                 |  |
|                     |           |                                                                          | 300 mm                 | 100                             |                                 |  |
|                     |           |                                                                          | 125 mm                 | 76                              |                                 |  |
| Location            |           | XC219-CPRC02 Type B Sample 7                                             | 100 mm                 | 76                              |                                 |  |
| LUCATION.           |           |                                                                          | 75 mm                  | 60                              |                                 |  |
|                     |           |                                                                          | 63 mm                  | 60                              |                                 |  |
| Supplier:           |           | Bulk                                                                     | 50 mm                  | 60                              |                                 |  |
|                     |           | Buik                                                                     | 37.5 mm                | 49                              |                                 |  |
| Source:             |           | Client Info.                                                             | 28 mm                  | 45                              |                                 |  |
|                     |           |                                                                          | 20 mm                  | 38                              |                                 |  |
| Depth (m):          |           | 3.0-3.4m                                                                 | 14 mm                  | 35                              |                                 |  |
|                     |           |                                                                          | 10 mm                  | 32                              |                                 |  |
| Sampling Re         | ason:     | Client Request                                                           | 5 mm                   | 28                              |                                 |  |
|                     |           |                                                                          | 3 35 mm                | 24                              |                                 |  |
| Sampled By:         | :         | Client                                                                   | 2 mm                   | 16                              |                                 |  |
| Cupatification      |           | Client                                                                   | 1.18 mm                | 13                              |                                 |  |
| Specification:      |           | Client                                                                   | 0.6 mm                 | 10                              |                                 |  |
| Proparation Mothod: |           | Without Organics Prenaration                                             | 0.425 mm               | 9                               |                                 |  |
| Preparation Methou. |           | Without Organies Preparation                                             | 0.3 mm                 | 9                               |                                 |  |
| Notes:              |           | Disturbed sample from cleanout                                           | 0.15 mm                | 7                               |                                 |  |
|                     |           | Bistarbea sample from cleanout                                           | 0.063 mm               | 6                               |                                 |  |
|                     |           |                                                                          | 0.020 mm               | 5                               |                                 |  |
|                     |           |                                                                          | 0.006 mm               | 3                               |                                 |  |
|                     |           |                                                                          | 0.003 mm               | 2                               |                                 |  |
|                     |           |                                                                          | 0.002 mm               | 2                               |                                 |  |
|                     |           |                                                                          | 0.001 11111            | -                               |                                 |  |

LABORATORY TEST REPORT

#### 100.0 90.0 80.0 70.0 Passing 60.0 50.0 40.0 % 30.0 20.0 10.0 0.0 0.001 0.01 0.1 1 10 100 Particle size (mm) medium coarse fine fine fine medium coarse medium coarse CLAY SILT SAND GRAVEL COBBLES

Tested in accordance with BS 1377: Part 2 : 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS



Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD.



## MOISTURE CONTENT BS 1377 : Part 2 : 1990 Oven Drying Method cl 3.2

| Site:         | Cork Line Leve | el Crossings |               | Job No.:      | 19-135                       |
|---------------|----------------|--------------|---------------|---------------|------------------------------|
| Client:       | OCB Geotech    | nical        |               | Lab Ref No.:  | ST 93432                     |
|               | Unit 1 Carrigo | gna          |               | Date Receive  | <b>d:</b> 09/03/2020         |
|               | Midleton       |              |               | Date Tested:  | 27/03/2020                   |
| Order No:     | 2003-104       |              |               | Date Reporte  | d: 02/04/2020                |
| Originator:   | Ian Holley     |              |               | Specification | : Client                     |
| Sampled Ref:  |                | XC219-CPRC0  | 3 Type D Samp | ole 3         |                              |
| Sample Type:  |                | Bulk         | Location:     |               | XC219-CPRC03 Type D Sample 3 |
| Date Sampled: |                | Client Info  | Sample by:    |               | Client                       |
| Depth:        |                | 0.5-1.2m     | Material Type | e:            | Soil                         |

Moisture Content (%):

Tested in accordance with BS 1377: Part 2: 1990 Sample preperation by cone and quarter

23

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager



Page 1 of 1



## LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

| Site Ref.:                     | Cork Line Level Crossings | Job No.:       | 19-135                           |  |  |
|--------------------------------|---------------------------|----------------|----------------------------------|--|--|
| Client:                        | OCB Geotechnical          | Lab Ref No.:   | ST 93433                         |  |  |
|                                | Unit 1 Carrigogna         | Sample Ref.:   | XC219-CPRC03 0.5-1.2m Type D S.3 |  |  |
|                                | Midleton                  | Date Sampled:  | Client Info                      |  |  |
|                                | Co Cork                   | Date Received: | 09/03/2020                       |  |  |
| Order No:                      | 2003-104                  | Date Tested:   | 02/04/2020                       |  |  |
| Originator:                    | Ian Holley                | Date Reported: | 22/04/2020                       |  |  |
|                                |                           |                |                                  |  |  |
| Sampling Certificat            | e                         | No             |                                  |  |  |
| Sampled By                     |                           | Client         |                                  |  |  |
| Sample Type                    |                           | Bulk           |                                  |  |  |
| Sample Preparation             | n Method                  | Washed         | Washed                           |  |  |
| MATERIAL                       |                           | Soil           | Soil                             |  |  |
| Retained 425 micro             | on (%)                    | 20             | 20                               |  |  |
| Natural Moisture Content (%)   |                           | 20             | 20                               |  |  |
| Liquid Limit (single point)(%) |                           | 29             | 29                               |  |  |
| Plastic Limit (%)              |                           | 22             |                                  |  |  |
| Plasticity Index               |                           | 6              |                                  |  |  |



The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager



James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561 Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

RS70 Issue 2



## **BRE Test Suite B - Greenfield Site**

| Project:       | Cork Line Level Crossings | Job No.:          | 19-135       |
|----------------|---------------------------|-------------------|--------------|
| Client:        | OCB Geotechnical          | Lab Ref. No.:     | ST 93437     |
|                | Unit 1 Carrigogna         | Date Received:    | 09/03/2020   |
|                | Midleton                  | Date Reported:    | 08/04/2020   |
|                | Co. Cork                  | Material:         | Soil         |
| Order No.:     | 2003-104                  | Date Tested:      | 07/04/2020   |
| Originator:    | Ian Holley                | Specification:    | Client       |
| Sample Details | XC219-CPRC03 T            | ype D Sample 5    |              |
| Supplier:      | Client Info               | Date of Sampling: | Client Info. |
| Source:        | Client Info               | Sampled By:       | Client       |
| Sample Locatio | <b>n:</b> 1.2-2.0m        | Sampling Reason:  | Request      |

| Parameter                             | RESULT |
|---------------------------------------|--------|
| рН                                    | 8.4    |
| Sulphate Aqueous Extract (SO4) (mg/l) | 11     |
| Sulphur as S, Total (%)               | 0.01   |
| Sulphate as SO4, Total (%)            | 0.02   |

## Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full. Tested in accordance with the above specifications Subcontracted to a laboratory UKAS accredited for this testing

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD.

□ James Ward, Operations Manager





## MOISTURE CONTENT BS 1377 : Part 2 : 1990 Oven Drying Method cl 3.2

| Site:         | Cork Line Leve | el Crossings |               | Job No.:      | 19-135                       |
|---------------|----------------|--------------|---------------|---------------|------------------------------|
| Client:       | OCB Geotech    | nical        |               | Lab Ref No.:  | ST 93435                     |
|               | Unit 1 Carrigo | gna          |               | Date Receive  | <b>d:</b> 09/03/2020         |
|               | Midleton       |              |               | Date Tested:  | 27/03/2020                   |
| Order No:     | 2003-104       |              |               | Date Reporte  | ed: 02/04/2020               |
| Originator:   | lan Holley     |              |               | Specification | : Client                     |
| Sampled Ref:  |                | XC219-CPRC0  | 3 Type D Samp | ble 5         |                              |
| Sample Type:  |                | Bulk         | Location:     |               | XC219-CPRC03 Type D Sample 5 |
| Date Sampled: |                | Client Info  | Sample by:    |               | Client                       |
| Depth:        |                | 1.2-2.0m     | Material Type | e:            | Soil                         |

Moisture Content (%):

Tested in accordance with BS 1377: Part 2: 1990 Sample preperation by cone and quarter

5.1

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.



James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager



Page 1 of 1

## James Fisher Testing Services Ltd Ruby House, 40A Hardwick Grange Warrington, WA1 4RF Tel: 01925286880



## LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

| Site Ref.:                     | Cork Line Level Crossings | Job No.:       | 19-135                           |  |  |
|--------------------------------|---------------------------|----------------|----------------------------------|--|--|
| Client:                        | OCB Geotechnical          | Lab Ref No.:   | ST 93436                         |  |  |
|                                | Unit 1 Carrigogna         | Sample Ref.:   | XC219-CPRC03 1.2-2.0m Type D S.5 |  |  |
|                                | Midleton                  | Date Sampled:  | Client Info                      |  |  |
|                                | Co Cork                   | Date Received: | 09/03/2020                       |  |  |
| Order No:                      | 2003-104                  | Date Tested:   | 27/03/2020                       |  |  |
| Originator:                    | Ian Holley                | Date Reported: | 02/04/2020                       |  |  |
|                                |                           |                |                                  |  |  |
| Sampling Certificat            | e                         | No             |                                  |  |  |
| Sampled By                     |                           | Client         |                                  |  |  |
| Sample Type                    |                           | Bulk           |                                  |  |  |
| Sample Preparatio              | n Method                  | Washed         |                                  |  |  |
| MATERIAL                       |                           | Soil           |                                  |  |  |
| Retained 425 micro             | on (%)                    | 65             | 65                               |  |  |
| Natural Moisture Content (%)   |                           | 7              |                                  |  |  |
| Liquid Limit (single point)(%) |                           | 19             |                                  |  |  |
| Plastic Limit (%)              |                           | Non-Plastic    | Non-Plastic                      |  |  |
| Plasticity Index               |                           | N/A            |                                  |  |  |



The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager



James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR



| Determ              | ination (                                         | Determination of Particle Size D | Distribution - BS 1377 | 7 : Part 2 : 19 | 190<br>1 · Part 2 · 1990 CL 9 5 |   |  |  |  |  |
|---------------------|---------------------------------------------------|----------------------------------|------------------------|-----------------|---------------------------------|---|--|--|--|--|
| Determ              | Project: Cork Line Level Crossings Loh No: 10.125 |                                  |                        |                 |                                 |   |  |  |  |  |
| Project:            | CORK LINE                                         | e Level Crossings                | JOD NO:                |                 | 19-135                          |   |  |  |  |  |
| Client:             | OCB Geo                                           | otechnical                       | Lab Ref No.:           |                 | ST 93434                        |   |  |  |  |  |
|                     | Unit 1 Ca                                         | arrigogna                        | Date Received:         |                 | 09/03/2020                      |   |  |  |  |  |
|                     | Midletor                                          | 1                                | Date Reported:         |                 | 02/04/2020                      |   |  |  |  |  |
|                     |                                                   |                                  | Date Tested:           |                 | 01/04/2020                      |   |  |  |  |  |
| Order No:           | 2003-10                                           | 4                                | Material:              |                 | Soil                            |   |  |  |  |  |
| Originator:         | Ian Holle                                         | ev.                              | Visual Description     | C               | obbly Clay, Sandy               |   |  |  |  |  |
|                     |                                                   | ·                                | BS Sieve               | %               | Specification                   | - |  |  |  |  |
| Client Ref.         |                                                   | XC219-CPRC03 Type B Sample 4     | Size                   | Passing         |                                 | - |  |  |  |  |
|                     |                                                   |                                  | 300 mm                 | 100             |                                 | - |  |  |  |  |
|                     |                                                   | YC210 CDPCO2 Typo B Sample 4     | 125 mm                 | 100             |                                 | - |  |  |  |  |
| Location            |                                                   |                                  | 100 mm                 | 100             |                                 |   |  |  |  |  |
| Location:           |                                                   | Xezij-er keus rype b sample 4    | 75 mm                  | 81              |                                 |   |  |  |  |  |
|                     |                                                   |                                  | 63 mm                  | 81              |                                 |   |  |  |  |  |
| Supplier:           |                                                   | Bulk                             | 50 mm                  | 81              |                                 |   |  |  |  |  |
|                     |                                                   |                                  | 37.5 mm                | 45              |                                 |   |  |  |  |  |
| Source:             |                                                   | Client Info.                     | 28 mm                  | 35              |                                 |   |  |  |  |  |
| Double (m)          |                                                   | 4.2.2.0.                         | 14 mm                  | 33              |                                 |   |  |  |  |  |
| Depth (m):          |                                                   | 1.2-2.0M                         | 10 mm                  | 31              |                                 |   |  |  |  |  |
| Sampling Reason     |                                                   | Client Poquest                   | 6.3 mm                 | 28              |                                 |   |  |  |  |  |
| Sampling Reason:    |                                                   | cheft Request                    | 5 mm                   | 24              |                                 |   |  |  |  |  |
| Sampled By:         |                                                   | Client                           | 3.35 mm                | 22              |                                 |   |  |  |  |  |
| Sumplea by.         |                                                   |                                  | 2 mm                   | 19              |                                 | _ |  |  |  |  |
| Specification       | :                                                 | Client                           | 1.18 mm                | 17              |                                 |   |  |  |  |  |
|                     |                                                   |                                  | 0.425 mm               | 15              |                                 | _ |  |  |  |  |
| Preparation Method: |                                                   | Without Organics Preparation     | 0.3 mm                 | 13              |                                 | - |  |  |  |  |
| Notos:              |                                                   | Disturbed cample from cleanout   | 0.15 mm                | 11              |                                 |   |  |  |  |  |
| NOLES.              |                                                   | Disturbed sample from cleanout   | 0.063 mm               | 9               |                                 |   |  |  |  |  |
|                     |                                                   |                                  | 0.020 mm               | 8               |                                 |   |  |  |  |  |
|                     |                                                   |                                  | 0.006 mm               | 5               |                                 |   |  |  |  |  |
|                     |                                                   |                                  | 0.003 mm               | 3               |                                 |   |  |  |  |  |
|                     |                                                   |                                  | 0.002 mm               | 3               |                                 |   |  |  |  |  |

## LABORATORY TEST REPORT



0.001 mm

Tested in accordance with BS 1377: Part 2 : 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS



Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD.



| Determ              | nination (                                        | Determination of Particle Size D | Distribution - BS 1377 | 7 : Part 2 : 19           | 190<br>1 · Part 2 · 1990 CL 9 5 |  |  |  |
|---------------------|---------------------------------------------------|----------------------------------|------------------------|---------------------------|---------------------------------|--|--|--|
| Project:            | Project: Cork Line Level Crossings Job No: 19-135 |                                  |                        |                           |                                 |  |  |  |
| Floject.            |                                                   | e Level clossings                |                        | 19-155                    |                                 |  |  |  |
| Client:             | OCB Geo                                           | otechnical                       | Lab Ref No.:           |                           | ST 93438                        |  |  |  |
|                     | Unit 1 Ca                                         | arrigogna                        | Date Received:         |                           | 09/03/2020                      |  |  |  |
|                     | Midleto                                           | า                                | Date Reported:         |                           | 02/04/2020                      |  |  |  |
|                     |                                                   |                                  | Date Tested:           |                           | 01/04/2020                      |  |  |  |
| Order No:           | 2003-10                                           | 4                                | Material:              |                           | Soil                            |  |  |  |
| Originator:         | Ian Holle                                         | 29                               | Visual Description     | Cobble, Light Clay, Sandy |                                 |  |  |  |
|                     |                                                   |                                  | BS Sieve               | %                         | Specification                   |  |  |  |
| Client Ref.         |                                                   | XC219-CPRC03 Type B Sample 7     | Size                   | Passing                   | · ·                             |  |  |  |
|                     |                                                   |                                  | 300 mm                 | 100                       |                                 |  |  |  |
|                     |                                                   |                                  | 125 mm                 | 100                       |                                 |  |  |  |
| Location            |                                                   | VC210 CDDC02 Tune D Semple 7     | 100 mm                 | 100                       |                                 |  |  |  |
| Location:           |                                                   | AC219-CFICOS Type B Sample 7     | 75 mm                  | 100                       |                                 |  |  |  |
|                     |                                                   |                                  | 63 mm                  | 100                       |                                 |  |  |  |
| Supplier:           |                                                   | Bulk                             | 50 mm                  | 100                       |                                 |  |  |  |
|                     |                                                   | Buik                             | 37.5 mm                | 86                        |                                 |  |  |  |
| Source:             |                                                   | Client Info.                     | 28 mm                  | 73                        |                                 |  |  |  |
|                     |                                                   |                                  | 20 mm                  | 62                        |                                 |  |  |  |
| Depth (m):          |                                                   | 2.5-3.5m                         | 14 mm                  | 57                        |                                 |  |  |  |
|                     |                                                   |                                  | 10 mm                  | 32                        |                                 |  |  |  |
| Sampling Rea        | ason:                                             | Client Request                   | 5 mm                   | 40                        |                                 |  |  |  |
|                     |                                                   |                                  | 3.35 mm                | 34                        |                                 |  |  |  |
| Sampled By:         |                                                   | Client                           | 2 mm                   | 28                        |                                 |  |  |  |
| C                   |                                                   | Client                           | 1.18 mm                | 25                        |                                 |  |  |  |
| Specification:      |                                                   | Client                           | 0.6 mm                 | 21                        |                                 |  |  |  |
| Prenaration Method. |                                                   | Without Organics Prenaration     | 0.425 mm               | 20                        |                                 |  |  |  |
| rieparation methou. |                                                   | Without organies rieparation     | 0.3 mm                 | 19                        |                                 |  |  |  |
| Notes:              |                                                   | Disturbed sample from cleanout   | 0.15 mm                | 16                        |                                 |  |  |  |
|                     |                                                   |                                  | 0.063 mm               | 13                        |                                 |  |  |  |
|                     |                                                   |                                  | 0.020 mm               | 12                        |                                 |  |  |  |
|                     |                                                   |                                  | 0.006 mm               | /                         |                                 |  |  |  |
|                     |                                                   |                                  | 0.003 mm               | 5                         |                                 |  |  |  |
|                     |                                                   |                                  | 0.002 mm               | 3                         |                                 |  |  |  |

LABORATORY TEST REPORT



Tested in accordance with BS 1377: Part 2 : 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS



Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD. James Ward, Operations Manager



## **BRE Test Suite B - Greenfield Site**

| Project:       | Cork Line Level Crossings | Job No.:          | 19-135       |
|----------------|---------------------------|-------------------|--------------|
| Client:        | OCB Geotechnical          | Lab Ref. No.:     | ST 93442     |
|                | Unit 1 Carrigogna         | Date Received:    | 09/03/2020   |
|                | Midleton                  | Date Reported:    | 09/04/2020   |
|                | Co. Cork                  | Material:         | Soil         |
| Order No.:     | 2003-104                  | Date Tested:      | 07/04/2020   |
| Originator:    | lan Holley                | Specification:    | Client       |
| Sample Details | XC219-CPRC03 T            | Type B Sample 9   |              |
| Supplier:      | Client Info               | Date of Sampling: | Client Info. |
| Source:        | Client Info               | Sampled By:       | Client       |
| Sample Locatio | <b>n:</b> 3.5-4.5m        | Sampling Reason:  | Request      |

| Parameter                             | RESULT |
|---------------------------------------|--------|
| рН                                    | 8.2    |
| Sulphate Aqueous Extract (SO4) (mg/l) | 11     |
| Sulphur as S, Total (%)               | 0.01   |
| Sulphate as SO4, Total (%)            | 0.01   |

## Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full. Tested in accordance with the above specifications Subcontracted to a laboratory UKAS accredited for this testing

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD.

□ James Ward, Operations Manager





## MOISTURE CONTENT BS 1377 : Part 2 : 1990 Oven Drying Method cl 3.2

| Site:         | Cork Line Leve | el Crossings |               | Job No.:      | 19-135                        |
|---------------|----------------|--------------|---------------|---------------|-------------------------------|
| Client:       | OCB Geotech    | nical        |               | Lab Ref No.:  | ST 93439                      |
|               | Unit 1 Carrigo | gna          |               | Date Receive  | <b>d:</b> 09/03/2020          |
|               | Midleton       |              |               | Date Tested:  | 27/03/2020                    |
| Order No:     | 2003-104       |              |               | Date Reporte  | ed: 02/04/2020                |
| Originator:   | Ian Holley     |              |               | Specification | : Client                      |
| Sampled Ref:  |                | XC219-CPRC0  | 3 Type D Samp | ble 10        |                               |
| Sample Type:  |                | Bulk         | Location:     |               | XC219-CPRC03 Type D Sample 10 |
| Date Sampled: |                | Client Info  | Sample by:    |               | Client                        |
| Depth:        |                | 3.5-4.5m     | Material Type | e:            | Soil                          |

Moisture Content (%):

Tested in accordance with BS 1377: Part 2: 1990 Sample preperation by cone and quarter

2.7

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.



Approved Signature James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager



Page 1 of 1



| Detern              | nination  | Determination of Particle Size Determination (Hydro | Distribution - BS 1377 | 7 : Part 2 : 19    | 90<br>• Part 2 • 1990 CL 9 5 |  |
|---------------------|-----------|-----------------------------------------------------|------------------------|--------------------|------------------------------|--|
| Project:            | Cork Lin  | e Level Crossings                                   | Job No:                | 19-135             |                              |  |
| Client              |           |                                                     | Lab Rof No.            |                    | ST 02441                     |  |
| client:             |           |                                                     |                        |                    | 31 93441                     |  |
|                     | Unit I C  | arrigogna                                           | Date Received:         |                    | 09/03/2020                   |  |
| Midleto             |           | n                                                   | Date Reported:         | 02/04/2020         |                              |  |
|                     |           |                                                     | Date Tested:           |                    | 01/04/2020                   |  |
| Order No:           | 2003-10   | 4                                                   | Material:              |                    | Soil                         |  |
| Originator:         | Ian Holle | 29                                                  | Visual Description     | Cobbly Clay, Sandy |                              |  |
|                     |           |                                                     | BS Sieve               | %                  | Specification                |  |
| Client Ref.         |           | XC219-CPRC03 Type B Sample 9                        | Size                   | Passing            |                              |  |
|                     |           |                                                     | 300 mm                 | 100                |                              |  |
|                     |           |                                                     | 125 mm                 | 100                |                              |  |
| Location            |           | VC210_CPPC02 Type R Sample 9                        | 100 mm                 | 80                 |                              |  |
| Location:           |           | Xezij-ci keus rype b sample j                       | 75 mm                  | 65                 |                              |  |
|                     |           |                                                     | 63 mm                  | 65                 |                              |  |
| Supplier:           |           | Bulk                                                | 50 mm                  | 65                 |                              |  |
| ouppliell           |           | Buik                                                | 37.5 mm                | 10                 |                              |  |
| Source:             |           | Client Info.                                        | 28 mm                  | 10                 |                              |  |
|                     |           |                                                     | 20 mm                  | 9                  |                              |  |
| Depth (m):          |           | 3.5-4.5m                                            | 14 mm                  | 8                  |                              |  |
|                     |           |                                                     | 10 mm                  | 7                  |                              |  |
| Sampling Re         | ason:     | Client Request                                      | 5 mm                   | 5                  |                              |  |
|                     |           |                                                     | 3 35 mm                | 5                  |                              |  |
| Sampled By:         | :         | Client                                              | 2 mm                   | 4                  |                              |  |
| Cupatification      |           | Client                                              | 1.18 mm                | 3                  |                              |  |
| Specification:      |           | Client                                              | 0.6 mm                 | 3                  |                              |  |
| Prenaration Method. |           | Without Organics Prenaration                        | 0.425 mm               | 3                  |                              |  |
| Freparation Method. |           | Without Organies Preparation                        | 0.3 mm                 | 2                  |                              |  |
| Notes:              |           | Disturbed sample from cleanout                      | 0.15 mm                | 2                  |                              |  |
|                     |           |                                                     | 0.063 mm               | 2                  |                              |  |
|                     |           |                                                     | 0.020 mm               | 1                  |                              |  |
|                     |           |                                                     | 0.006 mm               | 1                  |                              |  |
|                     |           |                                                     | 0.003 mm               | 1                  |                              |  |
|                     |           |                                                     | 0.002 mm               | 0                  |                              |  |
|                     |           |                                                     | 0.001 11111            | 0                  |                              |  |

## LABORATORY TEST REPORT



The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS



Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD. □ James Ward, Operations Manager

## James Fisher Testing Services Ltd Ruby House, 40A Hardwick Grange Warrington, WA1 4RF Tel: 01925286880



## LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

| Site Ref.:                     | Cork Line Level Crossings | Job No.:       | 19-135                            |  |  |  |
|--------------------------------|---------------------------|----------------|-----------------------------------|--|--|--|
| Client:                        | OCB Geotechnical          | Lab Ref No.:   | ST 93440                          |  |  |  |
|                                | Unit 1 Carrigogna         | Sample Ref.:   | XC219-CPRC03 3.5-4.5m Type D S.10 |  |  |  |
|                                | Midleton                  | Date Sampled:  | Client Info                       |  |  |  |
|                                | Co Cork                   | Date Received: | 09/03/2020                        |  |  |  |
| Order No:                      | 2003-104                  | Date Tested:   | 06/04/2020                        |  |  |  |
| Originator:                    | lan Holley                | Date Reported: | 22/04/2020                        |  |  |  |
|                                |                           |                |                                   |  |  |  |
| Sampling Certificat            | te                        | No             |                                   |  |  |  |
| Sampled By                     |                           | Client         | Client                            |  |  |  |
| Sample Type                    |                           | Bulk           | Bulk                              |  |  |  |
| Sample Preparatio              | n Method                  | Washed         |                                   |  |  |  |
| MATERIAL                       |                           | Soil           | Soil                              |  |  |  |
| Retained 425 micr              | on (%)                    | 19             | 19                                |  |  |  |
| Natural Moisture               | Content (%)               | 3              |                                   |  |  |  |
| Liquid Limit (single point)(%) |                           | 17             |                                   |  |  |  |
| Plastic Limit (%)              |                           | Non-Plastic    |                                   |  |  |  |
| Plasticity Index               |                           | N/A            |                                   |  |  |  |



The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager



James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR



## **BRE Test Suite B - Greenfield Site**

| Project:       | Cork Line Level Crossings | Job No.:          | 19-135       |
|----------------|---------------------------|-------------------|--------------|
| Client:        | OCB Geotechnical          | Lab Ref. No.:     | ST 93446     |
|                | Unit 1 Carrigogna         | Date Received:    | 09/03/2020   |
|                | Midleton                  | Date Reported:    | 09/04/2020   |
|                | Co. Cork                  | Material:         | Soil         |
| Order No.:     | 2003-104                  | Date Tested:      | 07/04/2020   |
| Originator:    | Ian Holley                | Specification:    | Client       |
| Sample Details | XC219-CPRC04 T            | ype D Sample 4    |              |
| Supplier:      | Client Info               | Date of Sampling: | Client Info. |
| Source:        | Client Info               | Sampled By:       | Client       |
| Sample Locatio | <b>n:</b> 1.2-2.0m        | Sampling Reason:  | Request      |

| Parameter                             | RESULT |
|---------------------------------------|--------|
| рН                                    | 8.1    |
| Sulphate Aqueous Extract (SO4) (mg/l) | 11     |
| Sulphur as S, Total (%)               | <0.01  |
| Sulphate as SO4, Total (%)            | <0.01  |

### Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full. Tested in accordance with the above specifications Subcontracted to a laboratory UKAS accredited for this testing

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD.

□ James Ward, Operations Manager





## MOISTURE CONTENT BS 1377 : Part 2 : 1990 Oven Drying Method cl 3.2

| Site:         | Cork Line Leve | el Crossings |               | Job No.:      | 19-135                       |
|---------------|----------------|--------------|---------------|---------------|------------------------------|
| Client:       | OCB Geotech    | nical        |               | Lab Ref No.:  | ST 93444                     |
|               | Unit 1 Carrigo | gna          |               | Date Receive  | <b>d:</b> 09/03/2020         |
|               | Midleton       |              |               | Date Tested:  | 27/03/2020                   |
| Order No:     | 2003-104       |              |               | Date Reporte  | d: 02/04/2020                |
| Originator:   | Ian Holley     |              |               | Specification | : Client                     |
| Sampled Ref:  |                | XC219-CPRC0  | 4 Type D Samp | ole 4         |                              |
| Sample Type:  |                | Bulk         | Location:     |               | XC219-CPRC04 Type D Sample 4 |
| Date Sampled: |                | Client Info  | Sample by:    |               | Client                       |
| Depth:        |                | 1.2-2.0m     | Material Type | e:            | Soil                         |

Moisture Content (%):

Tested in accordance with BS 1377: Part 2: 1990 Sample preperation by cone and quarter

5.7

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager



Page 1 of 1



| nination ( | Determination of Particle Size D                                                                  | Distribution - BS 1377                                                                                                                                                                                                                                                                                                                                                                                                | 7 : Part 2 : 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 990<br>/ • Part 2 • 1990 CL 9 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Cork Lin   | e Level Crossings                                                                                 | Job No:                                                                                                                                                                                                                                                                                                                                                                                                               | 19-135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       | 13-133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| OCB Geo    | otechnical                                                                                        | Lab Ref No.:                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ST 93443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Unit 1 Ca  | arrigogna                                                                                         | Date Received:                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 09/03/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Midleto    | n                                                                                                 | Date Reported:                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 02/04/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|            |                                                                                                   | Date Tested:                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01/04/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 2003-10    | 4                                                                                                 | Material:                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Ian Holle  | 29                                                                                                | Visual Description                                                                                                                                                                                                                                                                                                                                                                                                    | Large Cobble, Light Clay, Sandy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            |                                                                                                   | BS Sieve                                                                                                                                                                                                                                                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|            | XC219-CPRC04 Type B Sample 3                                                                      | Size                                                                                                                                                                                                                                                                                                                                                                                                                  | Passing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            |                                                                                                   | 300 mm                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            |                                                                                                   | 125 mm                                                                                                                                                                                                                                                                                                                                                                                                                | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            | XC219-CPRC04 Type B Sample 3                                                                      | 100 mm                                                                                                                                                                                                                                                                                                                                                                                                                | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            |                                                                                                   | 75 mm                                                                                                                                                                                                                                                                                                                                                                                                                 | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            |                                                                                                   | 63 mm                                                                                                                                                                                                                                                                                                                                                                                                                 | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            | Bulk                                                                                              | 50 mm                                                                                                                                                                                                                                                                                                                                                                                                                 | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            | 2.4                                                                                               | 37.5 mm                                                                                                                                                                                                                                                                                                                                                                                                               | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            | Client Info.                                                                                      | 28 mm                                                                                                                                                                                                                                                                                                                                                                                                                 | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            |                                                                                                   | 20 mm                                                                                                                                                                                                                                                                                                                                                                                                                 | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            | 1.2-2.0m                                                                                          | 14 mm                                                                                                                                                                                                                                                                                                                                                                                                                 | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            |                                                                                                   | 10 mm                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| ason:      | Client Request                                                                                    | 5 mm                                                                                                                                                                                                                                                                                                                                                                                                                  | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            |                                                                                                   | 3 35 mm                                                                                                                                                                                                                                                                                                                                                                                                               | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            | Client                                                                                            | 2 mm                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            | Client                                                                                            | 1.18 mm                                                                                                                                                                                                                                                                                                                                                                                                               | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| :          | Client                                                                                            | 0.6 mm                                                                                                                                                                                                                                                                                                                                                                                                                | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Mathad     | Without Organics Proparation                                                                      | 0.425 mm                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| wethou.    | without Organics Preparation                                                                      | 0.3 mm                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            | Disturbed sample from cleanout                                                                    | 0.15 mm                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            | Distarbed sample from cleanout                                                                    | 0.063 mm                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            |                                                                                                   | 0.020 mm                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            |                                                                                                   | 0.006 mm                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            |                                                                                                   | 0.003 mm                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            |                                                                                                   | 0.002 mm                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|            | Aination of<br>Cork Line<br>OCB Geo<br>Unit 1 Ca<br>Midleton<br>2003-10<br>Ian Hollo<br>Ian Hollo | Determination of Particle Size Distribution (Hydro         Cork Line Level Crossings         OCB Geotechnical         Unit 1 Carrigogna         Midleton         2003-104         Ian Holley         XC219-CPRC04 Type B Sample 3         Bulk         Client Info.         1.2-2.0m         client         Client Request         Client         Vithout Organics Preparation         Disturbed sample from cleanout | Determination of Particle Size Distribution - BS 1377           nination of Particle Size Distribution (Hydrometer Sedimentation)           Cork Line Level Crossings         Job No:           OCB Geotechnical         Lab Ref No.:           Unit 1 Carrigogna         Date Received:           Midleton         Date Received:           2003-104         Material:           Ian Holley         Visual Description           XC219-CPRC04 Type B Sample 3         Size           300 mm         125 mm           300 mm         125 mm           125 mm         63 mm           50 mm         20 mm           1.2-2.0m         10 mm           1.13 mm         63 mm           Client Info.         20 mm           1.2-2.0m         10 mm           Client Request         5 mm           5 mm         0.335 mm           Client         0.63 mm           0.425 mm         0.425 mm           0.63 mm         0.425 mm           0.63 mm         0.425 mm           0.003 mm | Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 19           Sination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377           Cork Line Level Crossings         Job No:           OCB Geotechnical         Lab Ref No.::           Unit 1 Carrigogna         Date Received:           Midleton         Date Reported:           Date Tested:         Z003-104         Material:           Ian Holley         Visual Description         Large Cr           XC219-CPRC04 Type B Sample 3         Size         Passing           XC219-CPRC04 Type B Sample 3         Bilk         Size         Passing           XC219-CPRC04 Type B Sample 3         Size         Passing         300 mm         100           Bulk         Size         Passing         32         63 mm         32 |  |  |

## LABORATORY TEST REPORT



Tested in accordance with BS 1377: Part 2 : 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS



Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD. ☐ James Ward, Operations Manager

## James Fisher Testing Services Ltd Ruby House, 40A Hardwick Grange Warrington, WA1 4RF Tel: 01925286880



## LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

| Site Ref.:                     | Cork Line Level Crossings | Job No.:       | 19-135                           |  |  |  |
|--------------------------------|---------------------------|----------------|----------------------------------|--|--|--|
| Client:                        | OCB Geotechnical          | Lab Ref No.:   | ST 93445                         |  |  |  |
|                                | Unit 1 Carrigogna         | Sample Ref.:   | XC219-CPRC04 1.2-2.0m Type D S.4 |  |  |  |
|                                | Midleton                  | Date Sampled:  | Client Info                      |  |  |  |
|                                | Co Cork                   | Date Received: | 09/03/2020                       |  |  |  |
| Order No:                      | 2003-104                  | Date Tested:   | 02/04/2020                       |  |  |  |
| Originator:                    | Ian Holley                | Date Reported: | 22/04/2020                       |  |  |  |
|                                |                           |                |                                  |  |  |  |
| Sampling Certificat            | e                         | No             |                                  |  |  |  |
| Sampled By                     |                           | Client         | Client                           |  |  |  |
| Sample Type                    |                           | Bulk           | Bulk                             |  |  |  |
| Sample Preparatio              | n Method                  | Washed         |                                  |  |  |  |
| MATERIAL                       |                           | Soil           | Soil                             |  |  |  |
| Retained 425 micro             | on (%)                    | 22             | 22                               |  |  |  |
| Natural Moisture C             | Content (%)               | 18             |                                  |  |  |  |
| Liquid Limit (single point)(%) |                           | 23             |                                  |  |  |  |
| Plastic Limit (%)              |                           | 17             |                                  |  |  |  |
| Plasticity Index               |                           | 6              |                                  |  |  |  |



The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager



James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR



#### LABORATORY TEST REPORT

### Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

#### Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5 Moisture content to BS 1377: Part 2 : 1990 Oven Drving Method Cl 3 2

|                |                  | Worsture content to by 1377. Pa | it 2 . 1990 Oven Dryn | ig iviethou c | 1 3.2             |
|----------------|------------------|---------------------------------|-----------------------|---------------|-------------------|
| Project:       | Cork Lin         | e Level Crossings               | Job No:               |               | 19-135            |
| Client:        | OCB Geotechnical |                                 | Lab Ref. No.:         |               | ST 93449          |
|                | Unit 1 C         | arrigogna                       | Date Received         |               | 09/03/2020        |
|                |                  |                                 |                       |               | 03/03/2020        |
|                | Nildieto         | n                               | Date Reported:        |               | 02/04/2020        |
|                | Co Cork          |                                 | Date Tested:          |               | 31/03/2020        |
| Order No:      | 2003-10          | 4                               | Material:             |               | Soil              |
| Originator:    | Ian Holle        | ey                              | Visual Description    | C             | obbly, Sandy Clay |
|                |                  |                                 |                       | 0/            |                   |
| Client Ref.    |                  | XC219-CRPC05 Type B Sample 3    | BS Sieve              | %             | Specification     |
|                |                  | ·····                           | Size                  | Passing       |                   |
|                |                  |                                 | 125 mm                | 100           |                   |
|                |                  | XC219-CRPC05 Type B Sample 3    | 100 mm                | 100           |                   |
| Location:      |                  |                                 | 90 mm                 | 100           |                   |
|                |                  |                                 | 75 mm                 | 100           |                   |
|                |                  |                                 | 50 mm                 | 100           |                   |
| Supplier:      |                  | Client Info.                    | 37.5 mm               | 43            |                   |
| Source:        |                  | Client Info.                    | 28 mm                 | 33            |                   |
|                |                  |                                 | 20 mm                 | 27            |                   |
| Donth (m)      |                  | 1 2 2 0m                        | 14 mm                 | 25            |                   |
| Depth (m):     |                  | 1.2-2.011                       | 10 mm                 | 23            |                   |
| Sampling Re    | ason.            | Client Request                  | 6.3 mm                | 20            |                   |
| Sampling Ne    | a3011.           | cheft hequest                   | 5 mm                  | 19            |                   |
| Sampled By:    |                  | Client                          | 3.35 mm               | 17            |                   |
|                |                  |                                 | 2 mm                  | 14            |                   |
| Specification: |                  | Client                          | 1.18 mm               | 10            |                   |
| -              |                  |                                 | 0.0 mm                | ,             |                   |
| Preparation    | Method:          | Without Organics Preparation    | 0.3 mm                | 4             |                   |
| Notes:         |                  | Disturbed sample from cleanout  | 0.15 mm               | 3             |                   |
|                |                  | Distance sample from cleanout   | 0.063 mm              | 2             |                   |
| Moisture Co    | ntent%:          | 3                               | 0.0205 mm             | 2             |                   |
|                |                  |                                 | 0.0060 mm             | 1             |                   |
|                |                  |                                 | 0.0029 mm             | 1             |                   |



The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD.





## LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

| Site Ref.:          | Cork Line Level Crossings | Job No.:       | 19-135                           |  |
|---------------------|---------------------------|----------------|----------------------------------|--|
| Client:             | OCB Geotechnical          | Lab Ref No.:   | ST 93448                         |  |
|                     | Unit 1 Carrigogna         | Sample Ref.:   | XC219-CPRC05 1.2-2.0m Type B S.3 |  |
|                     | Midleton                  | Date Sampled:  | Client Info                      |  |
|                     | Co Cork                   | Date Received: | 09/03/2020                       |  |
| Order No:           | 2003-104                  | Date Tested:   | 02/04/2020                       |  |
| Originator:         | lan Holley                | Date Reported: | 22/04/2020                       |  |
|                     |                           |                |                                  |  |
| Sampling Certifica  | ate                       | No             |                                  |  |
| Sampled By          |                           | Client         |                                  |  |
| Sample Type         |                           | Bulk           |                                  |  |
| Sample Preparati    | on Method                 | Washed         |                                  |  |
| MATERIAL            |                           | Soil           |                                  |  |
| Retained 425 mic    | ron (%)                   | 18             |                                  |  |
| Natural Moisture    | Content (%)               | 3              |                                  |  |
| Liquid Limit (singl | e point)(%)               | 20             |                                  |  |
| Plastic Limit (%)   |                           | Non-Plastic    |                                  |  |
| Plasticity Index    |                           | N/A            |                                  |  |
|                     |                           |                |                                  |  |



The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager



James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561 Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

RS70 Issue 2



#### LABORATORY TEST REPORT

### Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

#### Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5 Moisture content to BS 1377: Part 2 : 1990 Oven Drving Method Cl 3 2

| Moisture content to BS 1377. Part 2 : 1990 Oven Drying Method Cl 3.2 |                  |                                |                           |          |                     |
|----------------------------------------------------------------------|------------------|--------------------------------|---------------------------|----------|---------------------|
| Project:                                                             | Cork Lin         | e Level Crossings              | Job No:                   |          | 19-135              |
| Client:                                                              | OCB Geotechnical |                                | Lab Ref No.:              | ST 93452 |                     |
|                                                                      | Unit 1 C         | arrigogna                      | Date Received:            |          | 09/03/2020          |
|                                                                      |                  |                                |                           |          | 03/03/2020          |
|                                                                      | Midleto          | n                              | Date Reported:            |          | 02/04/2020          |
|                                                                      | Co Cork          |                                | Date Tested:              |          | 31/03/2020          |
| Order No:                                                            | 2003-10          | 4                              | Material:                 |          | Soil                |
| Originator:                                                          | Ian Holle        | ey                             | <b>Visual Description</b> | Da       | irk Clay, Fine Sand |
|                                                                      |                  |                                | BC Sieve                  | 9/       | Crecification       |
| Client Ref.                                                          |                  | XC219-TP02 Type B Sample 3     | BS Sieve                  | 70       | Specification       |
|                                                                      |                  |                                | Size                      | Passing  |                     |
|                                                                      |                  |                                | 125 mm                    | 100      |                     |
| Location                                                             |                  | XC219-TP02 Type B Sample 3     | 100 mm                    | 100      |                     |
| Location:                                                            |                  |                                | 90 mm                     | 100      |                     |
|                                                                      |                  |                                | 63 mm                     | 100      |                     |
|                                                                      |                  |                                | 50 mm                     | 100      |                     |
| Supplier:                                                            |                  | Client Info.                   | 37.5 mm                   | 100      |                     |
| Sourcou                                                              |                  | Client Info                    | 28 mm                     | 100      |                     |
| source:                                                              |                  | Client Into.                   | 20 mm                     | 100      |                     |
| Depth (m):                                                           |                  | 0 5-1 0m                       | 14 mm                     | 100      |                     |
|                                                                      |                  | 0.5-1.011                      | 10 mm                     | 100      |                     |
| Sampling Re                                                          | ason:            | Client Request                 | 6.3 mm                    | 100      |                     |
|                                                                      |                  |                                | 5 mm                      | 100      |                     |
| Sampled By:                                                          |                  | Client                         | 2 mm                      | 100      |                     |
| Specification:                                                       |                  |                                | 1.18 mm                   | 99       |                     |
|                                                                      |                  | Client                         | 0.6 mm                    | 97       |                     |
| Droparation Mathady                                                  |                  | Without Organics Proparation   | 0.425 mm                  | 95       |                     |
| Preparation wethod:                                                  |                  | without Organics Preparation   | 0.3 mm                    | 91       |                     |
| Notes:                                                               |                  | Disturbed sample from cleanout | 0.15 mm                   | 83       |                     |
|                                                                      |                  |                                | 0.063 mm                  | 17       |                     |
| Moisture Co                                                          | ntent%:          | 25                             | 0.0205 mm                 | 69       |                     |
|                                                                      |                  |                                | 0.0000 mm                 | 48       |                     |



### Tested in accordance with BS 1377: Part 2 : 1990 Clause 3.2, 9.2 and 9.5 Sedimentation by Hydrometer - Not UKAS



The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.





## DETERMINATION OF CALIFORNIA BEARING RATIO - BS 1377 : Part 4 : 1990

| Project :  | Cork Line Level Crossings | Job No:        | 19-135                     |
|------------|---------------------------|----------------|----------------------------|
| Client :   | OCB Geotechnical          | Lab Ref No:    | ST 93453                   |
|            | Unit 1 Carrigogna         | Date Received: | 09/03/2020                 |
|            | Midleton                  | Date Tested:   | 14/04/2020                 |
|            | Co Cork                   | Date Reported: | 22/04/2020                 |
| Order No:  | 2003-104                  | Sample Ref:    | XC219-TP02 Type D Sample 4 |
| Originator | : lan Holley              | Location:      | 0.5-1.0m                   |



| 5.0                  | 0.18  |        | 20.0                | 0.9           |       |
|----------------------|-------|--------|---------------------|---------------|-------|
| Moisture content : % | 24.3  |        | Mean                | CBR value : % | 0.9   |
| Penetration (mm)     | Force | e (kN) | Standard Force (kN) | Bottom CBR    | R (%) |
| 2.5                  | 0.    | 11     | 13.2                | 0.9           |       |
| 5.0                  | 0.    | 18     | 20.0                | 0.9           |       |
| Moisture content : % | 24.3  |        | Mean                | CBR value : % | 0.9   |

## Moisture content determined in accordance with BS 1377 : Part 2 : 1990 - oven drying method CBR determined in accordance with BS 1377 : Part 4 : 1990

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services Ltd

Phil Thorp, Laboratory Manager

James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR



## LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

| Site Ref.:                     | Cork Line Level Crossings | Job No.:       | 19-135                         |
|--------------------------------|---------------------------|----------------|--------------------------------|
| Client:                        | OCB Geotechnical          | Lab Ref No.:   | ST 93451                       |
|                                | Unit 1 Carrigogna         | Sample Ref.:   | XC219-TP02 0.5-1.0m Type B S.3 |
|                                | Midleton                  | Date Sampled:  | Client Info                    |
|                                | Co Cork                   | Date Received: | 09/03/2020                     |
| Order No:                      | 2003-104                  | Date Tested:   | 01/04/2020                     |
| Originator:                    | Ian Holley                | Date Reported: | 22/04/2020                     |
|                                |                           |                |                                |
| Sampling Certification         | ate                       | No             |                                |
| Sampled By                     |                           | Client         |                                |
| Sample Type                    |                           | Bulk           |                                |
| Sample Preparati               | on Method                 | Washed         |                                |
| MATERIAL                       |                           | Soil           |                                |
| Retained 425 mic               | ron (%)                   | 27             |                                |
| Natural Moisture Content (%)   |                           | 33             |                                |
| Liquid Limit (single point)(%) |                           | 44             |                                |
| Plastic Limit (%)              |                           | 31             |                                |
| Plasticity Index               |                           | 13             |                                |



The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager



James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561 Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

RS70 Issue 2



## MOISTURE CONTENT BS 1377 : Part 2 : 1990 Oven Drying Method cl 3.2

| Site:         | Cork Line Leve | el Crossings |               | Job No.:      | 19-135                     |
|---------------|----------------|--------------|---------------|---------------|----------------------------|
| Client:       | OCB Geotech    | nical        |               | Lab Ref No.:  | ST 93454                   |
|               | Unit 1 Carrigo | gna          |               | Date Receive  | ed: 09/03/2020             |
|               | Midleton       |              |               | Date Tested:  | 26/03/2020                 |
| Order No:     | 2003-104       |              |               | Date Reporte  | ed: 06/04/2020             |
| Originator:   | lan Holley     |              |               | Specification | : Client                   |
| Sampled Ref:  |                | XC219-TP02 T | ype B Sample  | 6             |                            |
| Sample Type:  |                | Bulk         | Location:     |               | XC219-TP02 Type B Sample 6 |
| Date Sampled: |                | Client Info  | Sample by:    |               | Client                     |
| Depth:        |                | 1.3-1.8m     | Material Type | e:            | Soil                       |

Moisture Content (%):

Tested in accordance with BS 1377: Part 2: 1990 Sample preperation by cone and quarter

32

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.



Approved Signature James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager



Page 1 of 1



## LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

| Site Ref.:                     | Cork Line Level Crossings | Job No.:       | 19-135                         |
|--------------------------------|---------------------------|----------------|--------------------------------|
| Client:                        | OCB Geotechnical          | Lab Ref No.:   | ST 93455                       |
|                                | Unit 1 Carrigogna         | Sample Ref.:   | XC219-TP02 1.3-1.8m Type B S.6 |
|                                | Midleton                  | Date Sampled:  | Client Info                    |
|                                | Co Cork                   | Date Received: | 09/03/2020                     |
| Order No:                      | 2003-104                  | Date Tested:   | 07/04/2020                     |
| Originator:                    | Ian Holley                | Date Reported: | 22/04/2020                     |
|                                |                           |                |                                |
| Sampling Certific              | ate                       | No             |                                |
| Sampled By                     |                           | Client         |                                |
| Sample Type                    |                           | Bulk           |                                |
| Sample Preparat                | ion Method                | Washed         |                                |
| MATERIAL                       |                           | Soil           |                                |
| Retained 425 mid               | cron (%)                  | 25             |                                |
| Natural Moisture Content (%)   |                           | 31             |                                |
| Liquid Limit (single point)(%) |                           | 38             |                                |
| Plastic Limit (%)              |                           | 25             |                                |
| Plasticity Index               |                           | 13             |                                |



The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager



James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561 Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

RS70 Issue 2



| Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 C | . 9.5  |
|----------------------------------------------------------------------------------------------------|--------|
| Project: Cork Line Level Crossings Job No: 19-135                                                  | 19-135 |
| Client: OCB Geotechnical Lab Ref No : ST 93456                                                     |        |
| Linit 1 Carriagana Date Bergived: 09/02/2020                                                       |        |
|                                                                                                    |        |
| Midleton Date Reported: 02/04/2020                                                                 |        |
| Date Tested: 31/03/2020                                                                            |        |
| Order No: 2003-104 Material: Soil                                                                  |        |
| Originator:         Ian Holley         Visual Description         Cobble, Light Clay, Sand         | у      |
| Client Def KC210 TD02 Tune D Semula 7 BS Sieve % Specificati                                       | on     |
| Client Ker. XC219-1P02 Type B Sample 7 Size Passing                                                |        |
| 300 mm 100                                                                                         |        |
| 125 mm 100                                                                                         |        |
| Location: XC219-TP02 Type B Sample 7 100 mm 100                                                    |        |
| 75 mm 85                                                                                           |        |
| 50 mm 85                                                                                           |        |
| Supplier: Bulk 37.5 mm 66                                                                          |        |
| 28 mm 63                                                                                           | -      |
| Source: Client Info. 20 mm 59                                                                      |        |
| <b>Donth (m):</b> 2.5.2.0m 14 mm 56                                                                |        |
| 10 mm 53                                                                                           |        |
| Sampling Reason: Client Request 6.3 mm 51                                                          |        |
| 5 mm 49                                                                                            |        |
| Sampled By: Client 3.35 mm 46                                                                      |        |
| 2 100 44<br>118 mm 41                                                                              |        |
| Specification: Client 0.6 mm 38                                                                    |        |
| Dependentian Mathedu Without Organics Departies 0.425 mm 37                                        |        |
| Preparation Method: Without Organics Preparation 0.3 mm 35                                         |        |
| Notes: Disturbed sample from cleanout 0.15 mm 30                                                   |        |
| 0.063 mm 26                                                                                        |        |
| 0.020 mm 23                                                                                        |        |
| 0.006 mm 14                                                                                        |        |
| 0.002 mm 8                                                                                         |        |

# LABORATORY TEST REPORT



0.001 mm

The stated result only relates to the item/location tested, this report shall not be reproduced except in full. Sedimentation by Hydrometer - Not UKAS

**Approved Signature** JAMES FISHER TESTING SERVICES (IRELAND) LTD. □ James Ward, Operations Manager





## BRE Test Suite B - Greenfield Site

| Project:       | Cork Line Level Crossings | Job No.:          | 19-135       |
|----------------|---------------------------|-------------------|--------------|
| Client:        | OCB Geotechnical          | Lab Ref. No.:     | ST 93457     |
|                | Unit 1 Carrigogna         | Date Received:    | 09/03/2020   |
|                | Midleton                  | Date Reported:    | 09/04/2020   |
|                | Co. Cork                  | Material:         | Soil         |
| Order No.:     | 2003-104                  | Date Tested:      | 07/04/2020   |
| Originator:    | Ian Holley                | Specification:    | Client       |
| Sample Details | ХС219-ТРО2 Ту             | pe B Sample 9     |              |
| Supplier:      | Client Info               | Date of Sampling: | Client Info. |
| Source:        | Client Info               | Sampled By:       | Client       |
| Sample Locatio | on: 3.5-4.0m              | Sampling Reason:  | Request      |

| Parameter                             | RESULT |
|---------------------------------------|--------|
| рН                                    | 8.2    |
| Sulphate Aqueous Extract (SO4) (mg/l) | <10    |
| Sulphur as S, Total (%)               | <0.01  |
| Sulphate as SO4, Total (%)            | 0.01   |

## Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full. Tested in accordance with the above specifications Subcontracted to a laboratory UKAS accredited for this testing

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD.

□ James Ward, Operations Manager



## James Fisher Testing Services Ltd Ruby House, 40A Hardwick Grange Warrington, WA1 4RF Tel: 01925286880



## LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

| Site Ref.:                     | Cork Line Level Crossings | Job No.:       | 19-135                             |  |  |
|--------------------------------|---------------------------|----------------|------------------------------------|--|--|
| Client:                        | OCB Geotechnical          | Lab Ref No.:   | ST 93459                           |  |  |
|                                | Unit 1 Carrigogna         | Sample Ref.:   | XC219-TP03 0.3-0.55m Type B Sample |  |  |
|                                | Midleton                  | Date Sampled:  | Client Info                        |  |  |
|                                | Co Cork                   | Date Received: | 09/03/2020                         |  |  |
| Order No:                      | 2003-104                  | Date Tested:   | 26/03/2020                         |  |  |
| Originator:                    | Ian Holley                | Date Reported: | 31/03/2020                         |  |  |
|                                |                           |                |                                    |  |  |
| Sampling Certific              | ate                       | No             |                                    |  |  |
| Sampled By                     |                           | Client         |                                    |  |  |
| Sample Type                    |                           | Bulk           |                                    |  |  |
| Sample Preparat                | ion Method                | Washed         |                                    |  |  |
| MATERIAL                       |                           | Soil           | Soil                               |  |  |
| Retained 425 mi                | cron (%)                  | 81             | 81                                 |  |  |
| Natural Moisture Content (%)   |                           | 21             |                                    |  |  |
| Liquid Limit (single point)(%) |                           | 18             |                                    |  |  |
| Plastic Limit (%)              |                           | Non-Plastic    |                                    |  |  |
| Plasticity Index               |                           | N/A            |                                    |  |  |



The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager



James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR



#### LABORATORY TEST REPORT

### Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

#### Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5 Moisture content to BS 1377: Part 2 : 1990 Oven Drying Method Cl 3 2

| Moisture content to BS 1377. Part 2 . 1990 Oven Drying Method Cl 5.2 |                  |                                |                               |                   |               |  |  |
|----------------------------------------------------------------------|------------------|--------------------------------|-------------------------------|-------------------|---------------|--|--|
| Project:                                                             | Cork Lin         | e Level Crossings              | Job No:                       |                   | 19-135        |  |  |
| Client:                                                              | OCB Geotechnical |                                | Lab Ref No.:                  | ST 93460          |               |  |  |
| Unit 1 C                                                             |                  | arrigogna                      | Date Received:                | 09/03/2020        |               |  |  |
|                                                                      | NA: dlata        | -                              | Date Received                 | 02/04/2020        |               |  |  |
|                                                                      | Midleto          | n                              | Date Reported: 02/04/2020     |                   | 02/04/2020    |  |  |
|                                                                      | Co Cork          |                                | Date Tested:                  |                   | 31/03/2020    |  |  |
| Order No:                                                            | 2003-10          | 4                              | Material:                     |                   | Soil          |  |  |
| Originator:                                                          | Ian Holle        | гу                             | Visual Description            | Cobble, Dark Clay |               |  |  |
|                                                                      |                  |                                | RS Siovo                      | 0/                | Specification |  |  |
| Client Ref.                                                          |                  | XC219-TP03 Type B Sample 2     | B3 Sleve                      | /0                | Specification |  |  |
|                                                                      |                  |                                | Size                          | Passing           |               |  |  |
|                                                                      |                  |                                | 125 mm                        | 100               |               |  |  |
| Leasting                                                             |                  | XC219-TP03 Type B Sample 2     | 100 mm                        | 100               |               |  |  |
| Location:                                                            |                  |                                | 90 mm                         | 100               |               |  |  |
|                                                                      |                  |                                | 63 mm                         | 100               |               |  |  |
|                                                                      |                  |                                | 50 mm                         | 100               |               |  |  |
| Supplier:                                                            |                  | Client Info.                   | 37.5 mm                       | 69                |               |  |  |
| Sourcos                                                              |                  | Client Info                    | 28 mm                         | 64                |               |  |  |
| source:                                                              |                  | Cilent iiilo.                  | 20 mm                         | 64                |               |  |  |
| Depth (m):                                                           |                  | 0.30-0.55m                     | 14 mm                         | 62                |               |  |  |
|                                                                      |                  |                                | 10 mm                         | 61                |               |  |  |
| Sampling Reason:                                                     |                  | Client Request                 | 6.3 mm                        | 60                |               |  |  |
|                                                                      |                  |                                | 5 mm                          | 59                |               |  |  |
| Sampled By:                                                          |                  | Client                         | 3.35 mm                       | 58                |               |  |  |
|                                                                      |                  | Client                         | 1.18 mm                       | 54                |               |  |  |
| Specification                                                        | า:               |                                | 0.6 mm                        | 52                |               |  |  |
| Droporation                                                          | Mathad.          | Mith and One airs Draw anti-   | 0.425 mm                      | 50                |               |  |  |
| Preparation Method:                                                  |                  | without Organics Preparation   | 0.3 mm                        | 47                |               |  |  |
| Notes:                                                               |                  | Disturbed sample from cleanout | 0.15 mm                       | 39                |               |  |  |
|                                                                      |                  | ·                              | 0.063 mm                      | 28                |               |  |  |
| Moisture Co                                                          | ntent%:          | 16                             | 0.0205 mm                     | 25                |               |  |  |
|                                                                      |                  |                                | 0.0060 mm                     | 1/                |               |  |  |
|                                                                      |                  |                                | <ul> <li>0.0029 mm</li> </ul> | 10                | 1             |  |  |



## Tested in accordance with BS 1377: Part 2 : 1990 Clause 3.2, 9.2 and 9.5 Sedimentation by Hydrometer - Not UKAS



The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.





## MOISTURE CONTENT BS 1377 : Part 2 : 1990 Oven Drying Method cl 3.2

| Site:               | Cork Line Leve | el Crossings |               | Job No.:      | 19-135                     |
|---------------------|----------------|--------------|---------------|---------------|----------------------------|
| Client: OCB Geotech |                | nical        |               | Lab Ref No.:  | ST 93461                   |
| Unit 1 Carrigo      |                | ogna         |               | Date Receive  | d: 09/03/2020              |
|                     | Midleton       |              |               | Date Tested:  | 13/03/2020                 |
| Order No:           | 2003-104       |              |               | Date Reporte  | ed: 25/03/2020             |
| Originator:         | lan Holley     |              |               | Specification | : Client                   |
| Sampled Ref:        |                | ХС219-ТРОЗ Т | ype B Sample  | 4             |                            |
| Sample Type:        |                | Bulk         | Location:     |               | XC219-TP03 Type B Sample 4 |
| Date Sampled:       |                | Client Info  | Sample by:    |               | Client                     |
| Depth:              |                | 0.7-1.2m     | Material Type | 2:            | Soil                       |

Moisture Content (%):

Tested in accordance with BS 1377: Part 2: 1990 Sample preperation by cone and quarter

20

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.



James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager



Page 1 of 1



## LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

| Site Ref.:         | Cork Line Level Crossings | Job No.:       | 19-135                                          |  |  |  |
|--------------------|---------------------------|----------------|-------------------------------------------------|--|--|--|
| Client:            | OCB Geotechnical          | Lab Ref No.:   | ST 93462<br>XC219-TP03 0.7-1.2m Type B Sample 4 |  |  |  |
|                    | Unit 1 Carrigogna         | Sample Ref.:   |                                                 |  |  |  |
|                    | Midleton                  | Date Sampled:  | Client Info                                     |  |  |  |
|                    | Co Cork                   | Date Received: | 09/03/2020                                      |  |  |  |
| Order No:          | 2003-104                  | Date Tested:   | 20/03/2020                                      |  |  |  |
| Originator:        | Ian Holley                | Date Reported: | 31/03/2020                                      |  |  |  |
|                    |                           |                |                                                 |  |  |  |
| Sampling Certific  | ate                       | No             |                                                 |  |  |  |
| Sampled By         |                           | Client         |                                                 |  |  |  |
| Sample Type        |                           | Bulk           |                                                 |  |  |  |
| Sample Preparati   | ion Method                | Washed         |                                                 |  |  |  |
| MATERIAL           |                           | Soil           |                                                 |  |  |  |
| Retained 425 mic   | cron (%)                  | 72             |                                                 |  |  |  |
| Natural Moisture   | e Content (%)             | 16             | 16                                              |  |  |  |
| Liquid Limit (sing | le point)(%)              | 21             | 21                                              |  |  |  |
| Plastic Limit (%)  |                           | Non-Plastic    |                                                 |  |  |  |
| Plasticity Index   |                           | N/A            |                                                 |  |  |  |



The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager



James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561 Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

RS70 Issue 2



| Project:       | Cork Lin  | e Level Crossings              | Job No:                 | 19-135            |               |  |
|----------------|-----------|--------------------------------|-------------------------|-------------------|---------------|--|
| Client: OCB Ge |           | otechnical                     | Lab Ref No.:            | ST 93463          |               |  |
| Unit 1 C       |           | arrigogna                      | Date Received:          | 09/03/2020        |               |  |
|                |           | an 808.10                      |                         | 25/03/2020        |               |  |
|                | Midleto   | 1                              | Date Reported:          | 25/03/2020        |               |  |
|                |           |                                | Date Tested: 23/03/2020 |                   | 23/03/2020    |  |
| Order No:      | 2003-10   | 4                              | Material:               | Soil              |               |  |
| Originator:    | Ian Holle | 29                             | Visual Description      | Cobbly, Dark Clay |               |  |
|                |           | -                              |                         |                   |               |  |
| Client Ref     |           | XC219-TP03 Type B Sample 4     | BS Sieve                | %                 | Specification |  |
| cheft Ker.     |           |                                | Size                    | Passing           |               |  |
|                |           |                                | 300 mm                  | 100               |               |  |
|                |           |                                | 125 mm                  | 100               |               |  |
| Location:      |           | XC219-TP03 Type B Sample 4     | 100 mm                  | 62                |               |  |
| Location.      |           |                                | 75 mm                   | 62                |               |  |
|                |           |                                | 63 mm                   | 62                |               |  |
| Supplier:      |           | Bulk                           | 50 mm                   | 62                |               |  |
| Supplien       |           | Buik                           | 37.5 mm                 | 50                |               |  |
| Source:        |           | Client Info.                   | 28 mm                   | 46                |               |  |
| oouree.        |           |                                | 20 mm                   | 45                |               |  |
| Depth (m):     |           | 0.7-1.2m                       | 14 mm                   | 43                |               |  |
|                |           |                                | 10 mm                   | 41                |               |  |
| Sampling Re    | ason:     | Client Request                 | 6.3 mm                  | 40                |               |  |
|                |           |                                | 3 35 mm                 | 39                |               |  |
| Sampled By:    |           | Client                         | 2 mm                    | 36                |               |  |
|                |           | Client                         | 1.18 mm                 | 34                |               |  |
| Specification  | n:        |                                | 0.6 mm                  | 32                |               |  |
| D              | Madla al. | Without Organics Preparation   | 0.425 mm                | 30                |               |  |
| Preparation    | iviethod: |                                | 0.3 mm                  | 28                |               |  |
| Notos          |           | Disturbed comple from cleanout | 0.15 mm                 | 22                |               |  |
| notes:         |           | Disturbed sample from cleanout | 0.063 mm                | 20                |               |  |
|                |           |                                | 0.019 mm                | 19                |               |  |
|                |           |                                | 0.006 mm                | 12                |               |  |
|                |           |                                | 0.003 mm                | 4                 |               |  |
|                |           |                                | 0.003 mm                | 3                 |               |  |

### LABORATORY TEST REPORT Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990



0.001 mm



Sedimentation by Hydrometer - Not UKAS

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD.





## BRE Test Suite B - Greenfield Site

| Project:       | Cork Line Level Crossings | Job No.:          | 19-135       |
|----------------|---------------------------|-------------------|--------------|
| Client:        | OCB Geotechnical          | Lab Ref. No.:     | ST 93465     |
|                | Unit 1 Carrigogna         | Date Received:    | 09/03/2020   |
|                | Midleton                  | Date Reported:    | 09/04/2020   |
|                | Co. Cork                  | Material:         | Soil         |
| Order No.:     | 2003-104                  | Date Tested:      | 07/04/2020   |
| Originator:    | Ian Holley                | Specification:    | Client       |
| Sample Details | ХС219-ТРОЗ Ту             | pe B Sample 7     |              |
| Supplier:      | Client Info               | Date of Sampling: | Client Info. |
| Source:        | Client Info               | Sampled By:       | Client       |
| Sample Locatio | on: 2.8-3.0m              | Sampling Reason:  | Request      |

| Parameter                             | RESULT |  |  |
|---------------------------------------|--------|--|--|
| рН                                    | 8.1    |  |  |
| Sulphate Aqueous Extract (SO4) (mg/l) | <10    |  |  |
| Sulphur as S, Total (%)               | <0.01  |  |  |
| Sulphate as SO4, Total (%)            | 0.01   |  |  |

## Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full. Tested in accordance with the above specifications Subcontracted to a laboratory UKAS accredited for this testing

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD.

□ James Ward, Operations Manager





| Dotorm                             | vination ( | Determination of Particle Size | Distribution - BS 1377  | : Part 2 : 19       | 990<br>7 · Part 2 · 1990 CL 9 5 |
|------------------------------------|------------|--------------------------------|-------------------------|---------------------|---------------------------------|
| Project: Cork Line Level Crossings |            | Joh No:                        | 10 125                  |                     |                                 |
| Project:                           | COLK LIN   | e Level Crossings              | JON DOI:                |                     | 19-135                          |
| Client:                            | OCB Geo    | otechnical                     | Lab Ref No.:            | ST 93464            |                                 |
|                                    | Unit 1 Ca  | arrigogna                      | Date Received:          | 09/03/2020          |                                 |
|                                    | Midleto    | า                              | Date Reported:          | 02/04/2020          |                                 |
|                                    |            |                                | Date Tested: 01/04/2020 |                     | 01/04/2020                      |
| Order No:                          | 2003-10    | 4                              | Material:               | Soil                |                                 |
| Originator:                        | Ian Holle  | 29                             | Visual Description      | Light Gravel, Sandy |                                 |
|                                    |            |                                | BS Sieve                | %                   | Specification                   |
| Client Ref.                        |            | XC219-TP03 Type B Sample 6     | Size                    | Passing             |                                 |
|                                    |            |                                | 300 mm                  | 100                 |                                 |
|                                    |            |                                | 125 mm                  | 100                 |                                 |
| Location                           |            | XC219-TP03 Type B Sample 6     | 100 mm                  | 100                 |                                 |
| Location.                          |            |                                | 75 mm                   | 100                 |                                 |
|                                    |            |                                | 63 mm                   | 100                 |                                 |
| Supplier:                          |            | Bulk                           | 50 mm                   | 100                 |                                 |
|                                    |            | Buik                           | 37.5 mm                 | 100                 |                                 |
| Source:                            |            | Client Info.                   | 28 mm                   | 91                  |                                 |
|                                    |            |                                | 20 mm                   | 86                  |                                 |
| Depth (m):                         |            | 2.0-2.5m                       | 14 mm                   | 79                  |                                 |
| /                                  |            |                                | 6.3 mm                  | 67                  |                                 |
| Sampling Rea                       | ason:      | Client Request                 | 5 mm                    | 61                  |                                 |
|                                    |            |                                | 3.35 mm                 | 55                  |                                 |
| Sampled By:                        |            | Client                         | 2 mm                    | 49                  |                                 |
| Specification                      |            | Client                         | 1.18 mm                 | 44                  |                                 |
| Specification                      | •          |                                | 0.6 mm                  | 39                  |                                 |
| Preparation                        | Method:    | Without Organics Prenaration   | 0.425 mm                | 37                  |                                 |
| rieparation method.                |            |                                | 0.3 mm                  | 35                  |                                 |
| Notes:                             |            | Disturbed sample from cleanout | 0.15 mm                 | 29                  |                                 |
|                                    |            | •                              | 0.053 mm                | 24                  |                                 |
|                                    |            |                                | 0.020 mm                | 12                  |                                 |
|                                    |            |                                | 0.000 mm                | 13                  |                                 |
|                                    |            |                                | 0.003 mm                | 7                   |                                 |
|                                    |            |                                | 0.001 mm                | 5                   |                                 |

## LABORATORY TEST REPORT



Tested in accordance with BS 1377: Part 2 : 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS



Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD.


#### LABORATORY TEST REPORT

#### BRE Test Suite B - Greenfield Site

| Project:       | Cork Line Level Crossings | Job No.:          | 19-135       |
|----------------|---------------------------|-------------------|--------------|
| Client:        | OCB Geotechnical          | Lab Ref. No.:     | ST 93468     |
|                | Unit 1 Carrigogna         | Date Received:    | 09/03/2020   |
|                | Midleton                  | Date Reported:    | 09/04/2020   |
|                | Co. Cork                  | Material:         | Soil         |
| Order No.:     | 2003-104                  | Date Tested:      | 07/04/2020   |
| Originator:    | Ian Holley                | Specification:    | Client       |
| Sample Details | ХС219-ТРО4 Ту             | pe B Sample 2     |              |
| Supplier:      | Client Info               | Date of Sampling: | Client Info. |
| Source:        | Client Info               | Sampled By:       | Client       |
| Sample Locatio | on: 0.3-0.8m              | Sampling Reason:  | Request      |

| Parameter                             | RESULT |
|---------------------------------------|--------|
| рН                                    | 7.6    |
| Sulphate Aqueous Extract (SO4) (mg/l) | <10    |
| Sulphur as S, Total (%)               | <0.01  |
| Sulphate as SO4, Total (%)            | 0.01   |

#### Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full. Tested in accordance with the above specifications Subcontracted to a laboratory UKAS accredited for this testing

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD.

□ James Ward, Operations Manager





#### LABORATORY TEST REPORT

#### DETERMINATION OF CALIFORNIA BEARING RATIO - BS 1377 : Part 4 : 1990

| Project :  | Cork Line Level Crossings | Job No:        | 19-135                     |
|------------|---------------------------|----------------|----------------------------|
| Client :   | OCB Geotechnical          | Lab Ref No:    | ST 93469                   |
|            | Unit 1 Carrigogna         | Date Received: | 09/03/2020                 |
|            | Midleton                  | Date Tested:   | 17/04/2020                 |
|            | Co Cork                   | Date Reported: | 21/04/2020                 |
| Order No:  | 2003-104                  | Sample Ref:    | XC219-TP04 Type B Sample 2 |
| Originator | : Ian Holley              | Location:      | 0.3-0.8m                   |



| Moisture content : % | 22.8       | Mean                | CBR value : % 0.4 |
|----------------------|------------|---------------------|-------------------|
| Penetration (mm)     | Force (kN) | Standard Force (kN) | Bottom CBR (%)    |
| 2.5                  | 0.04       | 13.2                | 0.3               |
| 5.0                  | 0.08       | 20.0                | 0.4               |
| Moisture content : % | 22.8       | Mean                | CBR value : % 0.3 |

Moisture content determined in accordance with BS 1377 : Part 2 : 1990 - oven drying method CBR determined in accordance with BS 1377 : Part 4 : 1990

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.



Approved Signature

James Fisher Testing Services Ltd

Phil Thorp, Laboratory Manager

James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR





#### LABORATORY TEST REPORT

#### MOISTURE CONTENT BS 1377 : Part 2 : 1990 Oven Drying Method cl 3.2

| Site:         | Cork Line Leve | el Crossings |               | Job No.:      | 19-135                     |  |
|---------------|----------------|--------------|---------------|---------------|----------------------------|--|
| Client:       | OCB Geotech    | nical        |               | Lab Ref No.:  | ST 93466                   |  |
|               | Unit 1 Carrigo | gna          |               | Date Receive  | <b>d:</b> 09/03/2020       |  |
|               | Midleton       |              |               | Date Tested:  | 27/03/2020                 |  |
| Order No:     | 2003-104       |              |               | Date Reporte  | ed: 02/04/2020             |  |
| Originator:   | lan Holley     |              |               | Specification | : Client                   |  |
| Sampled Ref:  |                | ХС219-ТРО4 Т | ype D Sample  | 2             |                            |  |
| Sample Type:  |                | Bulk         | Location:     |               | XC219-TP04 Type D Sample 2 |  |
| Date Sampled: |                | Client Info  | Sample by:    |               | Client                     |  |
| Depth:        |                | 0.3-0.8m     | Material Type | e:            | Soil                       |  |

Moisture Content (%):

Tested in accordance with BS 1377: Part 2: 1990 Sample preperation by cone and quarter

19

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.



James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager



Page 1 of 1



### LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

| Site Ref.:         | Cork Line Level Crossings | Job No.:       | 19-135                         |
|--------------------|---------------------------|----------------|--------------------------------|
| Client:            | OCB Geotechnical          | Lab Ref No.:   | ST 93467                       |
|                    | Unit 1 Carrigogna         | Sample Ref.:   | XC219-TP04 0.3-0.8m Type B S.2 |
|                    | Midleton                  | Date Sampled:  | Client Info                    |
|                    | Co Cork                   | Date Received: | 09/03/2020                     |
| Order No:          | 2003-104                  | Date Tested:   | 03/04/2020                     |
| Originator:        | Ian Holley                | Date Reported: | 22/04/2020                     |
|                    |                           |                |                                |
| Sampling Certific  | ate                       | No             |                                |
| Sampled By         |                           | Client         |                                |
| Sample Type        |                           | Bulk           |                                |
| Sample Preparat    | ion Method                | Washed         |                                |
| MATERIAL           |                           | Soil           |                                |
| Retained 425 mid   | cron (%)                  | 23             |                                |
| Natural Moisture   | e Content (%)             | 19             |                                |
| Liquid Limit (sing | le point)(%)              | 24             |                                |
| Plastic Limit (%)  |                           | 17             |                                |
| Plasticity Index   |                           | 7              |                                |



The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager



James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561 Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

RS70 Issue 2

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois Tel: 057 8664885



| Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990<br>Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5 |           |                                     |                    |               |                        |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------|--------------------|---------------|------------------------|--|--|--|--|--|--|--|--|
| Determ                                                                                                                                                                            |           | Di Particle Size Distribution (Hydi | inter Sedimentatio | оп) - DS 1577 | 10.405                 |  |  |  |  |  |  |  |  |
| Project:                                                                                                                                                                          | Cork Line | e Level Crossings                   | Job No:            |               | 19-135                 |  |  |  |  |  |  |  |  |
| Client:                                                                                                                                                                           | OCB Geo   | otechnical                          | Lab Ref No.:       |               | ST 93470               |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                   | Unit 1 Ca | arrigogna                           | Date Received:     |               | 09/03/2020             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                   | Midleto   | 1                                   | Date Reported:     |               | 02/04/2020             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                   |           |                                     | Date Tested:       | 31/03/2020    |                        |  |  |  |  |  |  |  |  |
| Order No:                                                                                                                                                                         | 2003-10   | 4                                   | Material:          | Soil          |                        |  |  |  |  |  |  |  |  |
| Originator:                                                                                                                                                                       | Lan Holle | -<br>-                              | Visual Description | Cobbl         | v Dark Clay, Fine Sand |  |  |  |  |  |  |  |  |
| enginatori                                                                                                                                                                        |           | - )                                 | PS Sieve           | 0/            | Specification          |  |  |  |  |  |  |  |  |
| Client Ref.                                                                                                                                                                       |           | XC219-TP04 Type B Sample 5          | BS Sieve           | 70            | Specification          |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                   |           |                                     | Size               | Passing       |                        |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                   |           |                                     | 300 mm             | 100           |                        |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                   |           |                                     | 125 mm             | 100           |                        |  |  |  |  |  |  |  |  |
| Location:                                                                                                                                                                         |           | XC219-TP04 Type B Sample 5          | 100 mm             | 100           |                        |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                   |           |                                     | 63 mm              | 100           |                        |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                   |           |                                     | 50 mm              | 100           |                        |  |  |  |  |  |  |  |  |
| Supplier:                                                                                                                                                                         |           | Bulk                                | 37.5 mm            | 57            |                        |  |  |  |  |  |  |  |  |
| -                                                                                                                                                                                 |           |                                     | 28 mm              | 51            |                        |  |  |  |  |  |  |  |  |
| Source:                                                                                                                                                                           |           | Client Info.                        | 20 mm              | 46            |                        |  |  |  |  |  |  |  |  |
| Dowth (ma):                                                                                                                                                                       |           | 1015-                               | 14 mm              | 43            |                        |  |  |  |  |  |  |  |  |
| Depth (m):                                                                                                                                                                        |           | 1.0-1.5m                            | 10 mm              | 40            |                        |  |  |  |  |  |  |  |  |
| Sampling Bo                                                                                                                                                                       | 2000      | Client Request                      | 6.3 mm             | 37            |                        |  |  |  |  |  |  |  |  |
| Sampling Kee                                                                                                                                                                      | ason.     | Client Request                      | 5 mm               | 34            |                        |  |  |  |  |  |  |  |  |
| Sampled By:                                                                                                                                                                       |           | Client                              | 3.35 mm            | 32            |                        |  |  |  |  |  |  |  |  |
| Sumplea by.                                                                                                                                                                       |           | cheft                               | 2 mm               | 30            |                        |  |  |  |  |  |  |  |  |
| Specification                                                                                                                                                                     | :         | Client                              | 1.18 mm            | 28            |                        |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                   |           |                                     | 0.6 mm             | 26            |                        |  |  |  |  |  |  |  |  |
| Preparation                                                                                                                                                                       | Method:   | Without Organics Preparation        | 0.425 mm           | 25            |                        |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                   |           |                                     | 0.5 mm             | 24            |                        |  |  |  |  |  |  |  |  |
| Notes:                                                                                                                                                                            |           | Disturbed sample from cleanout      | 0.063 mm           | 17            | 1                      |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                   |           |                                     | 0.020 mm           | 15            | 1                      |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                   |           |                                     | 0.006 mm           | 9             |                        |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                   |           |                                     | 0.003 mm           | 6             |                        |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                   |           |                                     | 0.002 mm           | 5             |                        |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                   |           |                                     | 0.001 mm           |               |                        |  |  |  |  |  |  |  |  |

### LABORATORY TEST REPORT



Tested in accordance with BS 1377: Part 2 : 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS



Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD. James Ward, Operations Manager

2

### INDEX PROPERTIES - SUMMARY OF RESULTS

|                                                                                                                                     |                                              | Samp                                                 | le                                       |           |      |                                                                                                            |                  | р                      | $p_{d}$                                         | w                                                  | < 425                        | WL           | W <sub>P</sub>                | Ιp                                      | $\rho_{s}$               |             |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------|-----------|------|------------------------------------------------------------------------------------------------------------|------------------|------------------------|-------------------------------------------------|----------------------------------------------------|------------------------------|--------------|-------------------------------|-----------------------------------------|--------------------------|-------------|
| Hole No.                                                                                                                            | No                                           | Dept                                                 | h (m)                                    | type      | Ĵ    | Soil Description                                                                                           |                  |                        |                                                 |                                                    | µm<br>sieve                  |              |                               |                                         |                          | Remarks     |
|                                                                                                                                     | 110.                                         | from                                                 | to                                       | type      |      |                                                                                                            |                  | Mg/                    | ′m3                                             | %                                                  | %                            | %            | %                             |                                         | Mg/m3                    |             |
|                                                                                                                                     |                                              |                                                      |                                          |           |      |                                                                                                            |                  |                        |                                                 |                                                    |                              |              |                               |                                         |                          |             |
|                                                                                                                                     |                                              |                                                      |                                          |           |      |                                                                                                            |                  |                        |                                                 |                                                    |                              |              |                               |                                         |                          |             |
|                                                                                                                                     |                                              |                                                      |                                          |           |      |                                                                                                            |                  |                        |                                                 |                                                    |                              |              |                               |                                         |                          |             |
|                                                                                                                                     |                                              |                                                      |                                          |           |      |                                                                                                            |                  |                        |                                                 |                                                    |                              |              |                               |                                         |                          |             |
|                                                                                                                                     |                                              |                                                      |                                          |           |      |                                                                                                            |                  |                        |                                                 |                                                    |                              |              |                               |                                         |                          |             |
|                                                                                                                                     |                                              |                                                      |                                          |           |      |                                                                                                            |                  |                        |                                                 |                                                    |                              |              |                               |                                         |                          |             |
|                                                                                                                                     |                                              |                                                      |                                          |           |      |                                                                                                            |                  |                        |                                                 |                                                    |                              |              |                               |                                         |                          |             |
|                                                                                                                                     |                                              |                                                      |                                          |           |      |                                                                                                            |                  |                        |                                                 |                                                    |                              |              |                               |                                         |                          |             |
|                                                                                                                                     |                                              |                                                      |                                          |           |      |                                                                                                            |                  |                        |                                                 |                                                    |                              |              |                               |                                         |                          |             |
|                                                                                                                                     |                                              |                                                      |                                          |           |      |                                                                                                            |                  |                        |                                                 |                                                    |                              |              |                               |                                         |                          |             |
|                                                                                                                                     |                                              |                                                      |                                          |           |      |                                                                                                            |                  |                        |                                                 |                                                    |                              |              |                               |                                         |                          |             |
|                                                                                                                                     |                                              |                                                      |                                          |           |      |                                                                                                            |                  |                        |                                                 |                                                    |                              |              |                               |                                         |                          |             |
| XC219-CPRC01                                                                                                                        | 6                                            | 0.50                                                 | 1.20                                     | D         | Brov | wn slightly sandy slightly gravelly CLAY                                                                   |                  |                        |                                                 | 21                                                 | 78 s                         | 34 a         | 20                            | 14                                      |                          |             |
| General notes:<br>Key : p bulk density, linear<br><i>pd</i> dry density<br><i>w</i> moisture content<br>* test carried out to BS EI | All above tes<br>WL<br>a<br>b<br>N ISO 17892 | ts carried<br>Liquid lin<br>4 point cc<br>1 point cr | out to BS<br>nit<br>one test<br>one test | 31377 : 1 | 1990 | unless annotated otherwise. See Remarks<br>WP Plastic limit<br>NP non - plastic<br>IP Plasticity Index     | s for f          | <sup>i</sup> urther de | etails<br><425un<br>n from<br>s sieve<br>h reme | n prepara<br>n natural :<br>ed specir<br>oved by ł | ation<br>soil<br>men<br>nand |              | ps par<br>-g = ga:<br>-p = sm | r <i>ticle de</i><br>s jar<br>1all pykr | n <i>sity</i><br>nometer |             |
| <b>QA Ref</b><br>SLR 1<br>Rev 2.95<br>Mar 17                                                                                        |                                              |                                                      |                                          |           |      | Project No N9426-20<br>Project Name Cork Line                                                              | 0<br>ə Lev       | vel Crc                | ossing                                          | S                                                  |                              |              | Fi                            | gure                                    | INC                      | X           |
|                                                                                                                                     | S                                            | C                                                    | от                                       | 'E(       | c    | The results reported relate only to the sc<br>expressed herein are outside the scope<br>SOCOTEC UK Limited | ample<br>e of Uł | es tested<br>KAS acc   | l; opinio<br>reditatio                          | ns and in<br>m. © Cop                              | terpretat<br>yright 20       | tions<br>017 | 1                             | Printe                                  | d: 20/11                 | /2020 09:59 |

### INDEX PROPERTIES - SUMMARY OF RESULTS

|                                                                                                                                    |                               | Samp                                                | le                                       |          |                                                                                                                   | р                     | $p_{d}$                                         | W                                                  | < 425                        | $W_{L}$      | W <sub>P</sub>              | ŀР                                       | $p_{s}$                   |             |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------|------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------|----------------------------------------------------|------------------------------|--------------|-----------------------------|------------------------------------------|---------------------------|-------------|
| Hole No.                                                                                                                           | No                            | Dept                                                | ιh (m)                                   | type     | Soil Description                                                                                                  |                       |                                                 |                                                    | µm<br>sieve                  | '            | '                           |                                          | '                         | Remarks     |
|                                                                                                                                    | 110.                          | from                                                | to                                       | ιγρυ     | ÷                                                                                                                 | Mç                    | J/m3                                            | %                                                  | %                            | %            | %                           |                                          | Mg/m3                     | '           |
| XC219-CPRC01                                                                                                                       | 8                             | 1.20                                                | 2.00                                     | D        | Brown slightly sandy gravelly CLAY.                                                                               |                       |                                                 | 7                                                  | 45 s                         | 23 a         | 16                          | 7                                        |                           |             |
| XC219-CPRC01                                                                                                                       | 11                            | 2.00                                                | 2.40                                     | D        | Brown slightly sandy slightly gravelly CLAY.                                                                      |                       |                                                 | 25                                                 | 95 h                         | 44 a         | 23                          | 21                                       |                           |             |
| XC219-CPRC01                                                                                                                       | 13                            | 2.40                                                | 3.00                                     | D        |                                                                                                                   |                       |                                                 | 5.8                                                |                              |              |                             |                                          |                           |             |
|                                                                                                                                    |                               |                                                     |                                          |          |                                                                                                                   |                       |                                                 |                                                    |                              |              |                             |                                          |                           |             |
|                                                                                                                                    |                               |                                                     |                                          |          |                                                                                                                   |                       |                                                 |                                                    |                              |              |                             |                                          |                           |             |
|                                                                                                                                    |                               |                                                     |                                          |          |                                                                                                                   |                       |                                                 |                                                    |                              |              |                             |                                          |                           |             |
|                                                                                                                                    |                               |                                                     |                                          |          |                                                                                                                   |                       |                                                 |                                                    |                              |              |                             |                                          |                           |             |
|                                                                                                                                    |                               |                                                     |                                          |          |                                                                                                                   |                       |                                                 |                                                    |                              |              |                             |                                          |                           |             |
|                                                                                                                                    |                               |                                                     |                                          |          |                                                                                                                   |                       |                                                 |                                                    |                              |              |                             |                                          |                           |             |
|                                                                                                                                    |                               |                                                     |                                          |          |                                                                                                                   |                       |                                                 |                                                    |                              |              |                             |                                          |                           |             |
|                                                                                                                                    |                               |                                                     |                                          |          |                                                                                                                   |                       |                                                 |                                                    |                              |              |                             |                                          |                           |             |
|                                                                                                                                    |                               |                                                     |                                          |          |                                                                                                                   |                       |                                                 |                                                    |                              |              |                             |                                          |                           |             |
|                                                                                                                                    |                               |                                                     |                                          |          |                                                                                                                   |                       |                                                 |                                                    |                              |              |                             |                                          |                           |             |
| General notes:<br>Key : p bulk density, linear<br><i>pd</i> dry density<br><i>w</i> moisture content<br>* test carried out to BS E | All above tes<br>WL<br>a<br>b | sts carried<br>Liquid lir<br>4 point c<br>1 point c | out to BS<br>mit<br>one test<br>one test | 1377 : ' | : 1990 unless annotated otherwise. See Remarks for<br>WP Plastic limit<br>NP non - plastic<br>IP Plasticity Index | further d             | letails<br><425ur<br>n fron<br>s sie\<br>h rerr | m prepara<br>n natural :<br>ved specir<br>noved by | ation<br>soil<br>men<br>hand |              | ps pa<br>-g = ga<br>-p = sr | ı <i>rticle de</i><br>as jar<br>nall pyk | <i>∍nsity</i><br>:nometer |             |
| <b>QA Ref</b><br>SLR 1<br>Rev 2.95<br>Mar 17                                                                                       |                               | C                                                   |                                          |          | Project No N9426-20<br>Project Name Cork Line Le                                                                  | evel Cr               | ossing                                          | js                                                 |                              |              | Fi                          | gure                                     | INE                       | X           |
|                                                                                                                                    | S                             | DC                                                  | от                                       | Έ¢       | C The results reported relate only to the samp expressed herein are outside the scope of U SOCOTEC UK Limited     | oles teste<br>UKAS ac | d; opinio<br>creditatio                         | ons and in<br>on. © Cor                            | terpretat                    | tions<br>017 | T                           | Printe                                   | ed: 20/11                 | /2020 09:59 |











### California Bearing Ratio (BS1377:1990:Part 4, section 7)



Appendix I Geotechnical Rock Core Laboratory Test Results

0001

SOCOTEC

| All specimens tested at as received water content unless shown otherwise |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        |                |                 |                |       |             |         |      |          |       |                   |          |         |           |                 |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------|--------|----------------|-----------------|----------------|-------|-------------|---------|------|----------|-------|-------------------|----------|---------|-----------|-----------------|
| Test Type                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        |                |                 | Diam           | etral |             |         | A    | xial     |       | Blo               | ock/i    | rreg    | gular lur | np              |
| D - Diametra                                                             | il, A - Ax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ial, I - Irre | gular<br>ando | Lump    | o, B - | Block          |                 |                | P     |             |         |      | ΙP       |       |                   |          |         | , P       | ·<br>           |
| L - parallel t                                                           | o planes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s of weakn    | ness          | m)      |        |                |                 |                |       | -           |         | . (  | +        |       |                   | -/       |         | ± ,       |                 |
| P - perpendi                                                             | cular to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | planes of     | weal          | ness    |        |                | 1               |                |       | $\bigcap$   |         |      | $\smile$ | 1     | L <sub>ne</sub>   | /        |         |           | D <sub>ps</sub> |
| Dimensions                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               | _       |        |                | D <sub>ps</sub> |                |       | t w         | Dp      | is ┥ |          | •     |                   | ŀ        |         | ·····     |                 |
| Dps - Distan                                                             | ce betw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | een plater    | ns ( p        | laten   | separ  | ation)         | • (             | <u></u>        | •     |             |         | ↓ l  | vv       | J     |                   |          | VV      |           |                 |
| Lne - Length                                                             | ure<br>1 from p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | latens to r   | neare         | st free | end    |                | L <sub>ne</sub> |                |       |             |         |      |          |       |                   |          |         |           |                 |
| W - Width o                                                              | of shorte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | est dimen     | sion p        | perpe   | ndicu  | lar to load, P |                 |                |       |             |         |      |          |       |                   |          |         |           |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        |                |                 |                |       |             |         |      |          |       |                   |          |         |           |                 |
|                                                                          | Test Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |               |         |        |                |                 |                |       |             |         |      |          |       |                   | Poi      | nt Lo   | ad Index  |                 |
|                                                                          | Image: Sec ISRM     Image: Sec ISRM <td< td=""><td>eter,</td><td></td><td>MF</td><td>Pa</td><td></td></td<> |               |               |         |        |                |                 |                |       |             |         |      |          |       | eter,             |          | MF      | Pa        |                 |
| ole                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        |                |                 |                |       |             |         |      | liame    | F=    | = (De/            | (50)0 45 | Pomorko |           |                 |
| oreh                                                                     | epth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nple          | ple           | cime    | men    | Rock type      | Â               | د <del>۵</del> | e Val |             |         |      |          |       | De<br>ent d<br>mm | <u> </u> | (20,    | 00)0110   | Remarks         |
| ă                                                                        | ā                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sar           | San           | Spe     | peci   |                | , I, E          | ctior<br>or L  | ilure | Lne         | w       | Dps  | Dps'     | kN    | lival             |          | ۰       | ls(50)    |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         | 0<br>0 |                | D, A            | Dire<br>(L, P  | Ц     | mm          | mm      | mm   | mm       |       | edr               |          | 0       | 10(00)    |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        |                |                 |                |       |             |         |      |          |       |                   |          |         |           |                 |
| XC219-                                                                   | 3.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | С             | 1       |        | LIMESTONE      | А               | Р              | Y     |             | 73.8    | 62.0 | 57.0     | 14.60 | 73.17             | 2.       | 73      | 3.24      |                 |
| 011(002                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        |                |                 |                |       |             |         |      |          |       |                   |          |         |           |                 |
| XC219-                                                                   | 4.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |               |         |        |                |                 |                | V     |             | 75 5    | 70.0 | 74.0     | 4.00  |                   |          | 40      | 0.00      |                 |
| CPRC02                                                                   | 4.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | C             | 1       |        | LIMESTONE      | D               | L              | Y     | 60.0        | 75.5    | 76.0 | 74.0     | 1.02  | /4./4             | 0.       | 18      | 0.22      |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        |                |                 |                |       |             |         |      |          |       |                   |          |         |           |                 |
| XC219-<br>CPRC02                                                         | 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | С             | 1       |        | LIMESTONE      | D               | L              | Y     | 80.0        | 77.7    | 66.0 | 64.0     | 1.61  | 70.51             | 0.3      | 32      | 0.38      |                 |
| 011(002                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        |                |                 |                |       |             |         |      |          |       |                   |          |         |           |                 |
| XC219-                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        |                |                 |                |       |             |         |      |          | 15.00 |                   |          |         |           |                 |
| CPRC02                                                                   | 7.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | С             | 1       |        | LIMESTONE      | A               | Р              | Y     |             | 75.8    | 84.0 | 78.0     | 15.66 | 86.73             | 2.       | 08      | 2.67      |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        |                |                 |                |       |             |         |      |          |       |                   |          |         |           |                 |
| XC219-                                                                   | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | с             | 1       |        | LIMESTONE      | А               | Р              | Y     |             | 75.7    | 90.0 | 86.0     | 14.33 | 91.07             | 1.       | 73      | 2.26      |                 |
| CFRC02                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        |                |                 |                |       |             |         |      |          |       |                   |          |         |           |                 |
| XC219-                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        | ======         |                 |                |       |             |         |      |          |       |                   |          |         |           |                 |
| CPRC02                                                                   | 14.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | С             | 1       |        | LIMESTONE      | D               | L              | Y     | 70.0        | 75.9    | 76.0 | 62.0     | 14.16 | 68.62             | 3.       | 01      | 3.47      |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        |                |                 |                |       |             |         |      |          |       |                   |          |         |           |                 |
| XC219-<br>CPRC03                                                         | 5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | С             | 1       |        | LIMESTONE      | D               | L              | Y     | 80.0        | 77.5    | 76.0 | 75.0     | 17.97 | 76.23             | 3.       | 09      | 3.74      |                 |
| 01110000                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        |                |                 |                |       |             |         |      |          |       |                   |          |         |           |                 |
| XC219-                                                                   | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |               |         |        |                |                 |                | Ň     | 400.0       | 70.0    | 70.0 |          | 44.00 | 70 70             |          | - 4     | 0.00      |                 |
| CPRC03                                                                   | 6.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | C             | 1       |        | LIMESTONE      | D               | L              | Y     | 100.0       | 78.8    | 76.0 | 69.0     | 14.88 | /3./3             | 2.       | 74      | 3.26      |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        |                |                 |                |       |             |         |      |          |       |                   | -        |         |           |                 |
| XC219-<br>CPRC03                                                         | 6.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | С             | 1       |        | LIMESTONE      | D               | L              | Y     | 50.0        | 74.6    | 75.0 | 71.0     | 18.65 | 72.80             | 3.       | 52      | 4.17      |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        |                |                 |                |       |             |         |      |          |       |                   |          |         |           |                 |
| XC219-                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |               |         |        |                |                 |                | v     | <b>FF 0</b> | 76.4    | 77.0 | 66.0     | 14.00 | 70.07             |          | 22      | 0.74      |                 |
| CPRC03                                                                   | ð.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | C             |         |        | LINESIONE      | U               |                | Y     | 55.0        | /0.1    | 11.0 | 0.00     | 11.63 | 10.87             | 2.3      | 32      | 2.71      |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         | -      |                |                 |                |       |             |         |      |          |       |                   |          |         |           |                 |
| XC219-<br>CPRC03                                                         | 8.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | С             | 1       |        | LIMESTONE      | I               | Р              | Y     | 50.0        | 75.6    | 62.0 | 59.0     | 15.80 | 75.35             | 2.       | 78      | 3.35      |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        |                |                 |                |       | <u> </u>    |         |      | <u> </u> |       |                   | ┞        |         |           |                 |
| XC219-                                                                   | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |               | 1       |        |                | ^               |                | v     |             | 76 1    | 71.0 | 66.0     | 17 67 | 70.05             | <b>_</b> | 76      | 2 / 1     |                 |
| CPRC03                                                                   | 9.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |               | '       |        |                | A               |                | ſ     |             | 10.1    | /1.0 | 00.0     | 10.11 | 19.90             | 2.       | 10      | 3.41      |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        |                |                 |                |       |             |         |      |          |       | ļ                 |          |         |           |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        |                |                 |                |       |             |         |      |          |       |                   |          |         |           |                 |
| QA Ref                                                                   | QA Ref Project No N9366-20 Figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |               |         |        |                |                 |                |       |             |         |      |          |       |                   |          |         |           |                 |
| ISRM 85<br>Rev 2 10                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |         |        |                |                 |                |       |             |         |      |          | т     |                   |          |         |           |                 |
| Aug 17                                                                   | = ( >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ≮) -          |               |         |        |                | oject N         |                |       | 11311 Г     | .un - ( |      |          |       |                   |          |         | P         | - 1             |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AS            |               |         |        |                |                 |                |       |             |         |      |          |       |                   |          |         |           |                 |
| 1                                                                        | TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ING           |               |         |        |                |                 |                |       |             |         |      |          |       |                   |          |         |           |                 |

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. Copyright 2017 SOCOTEC UK Limited

Sheet Printed 12/11/2020 09:13

| All specimens tested at as received water content unless shown otherwise |                  |                  |                |             |          |                      |                 |                 |          |            |                |            |            |              |                                              |               |                |                 |
|--------------------------------------------------------------------------|------------------|------------------|----------------|-------------|----------|----------------------|-----------------|-----------------|----------|------------|----------------|------------|------------|--------------|----------------------------------------------|---------------|----------------|-----------------|
| Test Type                                                                | -1 ^ . ^         | viol I - Irre    | - aular        | - Lum       | ~ B.     | Block                | ŗ               | Diam            | etral    |            |                | A          | xial       |              | Blc                                          | ck/irreç      | gular lur      | mp              |
| Direction (                                                              | U = unk          | nown or r        | guiar<br>rando | umµ<br>,m)  | ), В -   | BIOCK                |                 |                 | P        |            |                |            | P          |              |                                              |               | <u> </u>       | <b>→</b>        |
| L - parallel to<br>P - perpend                                           | o planes         | of weakr         | iess<br>f weat | knoss       | •        |                      | 1               |                 | *        |            |                |            |            |              | L <sub>ne</sub>                              | 7             | -              | D <sub>ps</sub> |
| Dimensions                                                               |                  | planes or        | Wean           | (11635      |          | 1                    | D <sub>ps</sub> |                 |          | + w        | Dp             | os 🔺       |            |              |                                              |               |                | /* *            |
| Dps - Distan                                                             | ice betw         | een plater       | ns ( p'        | laten       | separ    | ration)              | ¥ 🗸             |                 | •        |            |                | ↓ U        | W          | J            |                                              | W             |                | /               |
| Lne - Length                                                             | ກ from p         | latens to        | neare          | st fre      | e end    | J.                   | ļ               | L <sub>ne</sub> |          |            |                |            |            |              | -                                            |               |                |                 |
| W - Width 🤆                                                              | of shorte        | est dimen        | sion r         | perper      | ndicu    | lar to load, P       |                 |                 |          |            |                |            |            |              |                                              |               |                |                 |
|                                                                          |                  |                  | <u> </u>       |             | <u> </u> |                      |                 |                 |          | <u> </u>   |                |            |            |              |                                              |               |                |                 |
|                                                                          | '                |                  |                |             | ÷        |                      | Test            | Туре            | ź        |            | Dime           |            | ,          | LOAD         | ter,                                         | Point Lo<br>M | ad Index<br>Pa | 1               |
| ole                                                                      | ٤                | Ref              | Type           | in Ref      | Dept     |                      | Fig 5           | and 8           | id (Y/   |            | Dimer          | ASIU ເອ    | ļ          | Р            | liame                                        | F = (De       | -/50)0,45      | Domarke         |
| Soreh                                                                    | Jepth,           | #mple            | mple           | scime       | Simen    | Rock type            | B               | ا د ج           | e Vali   |            |                | <u> </u>   | Γ          | '            | De<br>lent d<br>mm                           | 1 — <u>\</u>  | 50,0.12        | Kefnarks        |
| ш                                                                        |                  | Š                | Sa             | Spé         | Spec     |                      | Гуре<br>А, I,   | rectio<br>P or  | Failur   | Lne<br>mm  | W<br>mm        | Dps<br>mm  | Dps'<br>mm | kN           | quiva                                        | ls            | ls(50)         | 1               |
|                                                                          | <b>└──</b> ′     | <b> </b> '       | <u> </u> _'    | <b>↓</b> '  | _        | <b>_</b>             | Ĺ Ū             | نے ق            | Ļ_'      | <u> </u>   | <u> </u>       | <u> </u>   | <u> </u>   | <b> </b> '   | ٩                                            | <b></b> _'    | Ļ/             | <b> </b>        |
| XC219-                                                                   | 2.70             | '                | c              |             |          | IMESTONE             |                 | P               | Y        | 45.0       | 77.9           | 62.0       | 58.0       | 15.55        | 75.86                                        | 2.70          | 3.26           |                 |
| CPRC04                                                                   | <b>2</b>         | <u> </u> '       |                |             |          |                      |                 |                 | Ľ        |            | <u> </u>       |            |            |              |                                              |               |                | I               |
| XC219-                                                                   |                  |                  |                | Γ, '        | ſ        |                      |                 | Γ, Ι            | Ī. '     |            | 01 5           | 76.0       | 63.0       | 15.60        | 71 63                                        | 2.04          | 2 57           |                 |
| CPRC04                                                                   | 3.00             | '                |                | '           |          |                      |                 | <u> </u>        | '        | 00.0       | 01.5           | 70.0       | 00.0       | 10.00        | /1.00                                        | J.U-1         | 3.57           |                 |
| XC219-                                                                   | 0.70             |                  |                |             |          | UNE OTONIE           |                 | Γ.'             |          |            |                | 70.0       |            | 14.95        | 0.04                                         | 2.54          | 2.02           |                 |
| CPRC04                                                                   | 3.70             | '                | L<br>L         | 1           |          | LIMESTONE            | יט              |                 | , ř      | 70.0       | 76.4           | 76.u       | 61.u       | 11.8ວ        | 68.24                                        | 2.54          | 2.93           | 1               |
| XC219-                                                                   |                  |                  |                |             |          |                      |                 |                 |          |            |                |            |            |              |                                              |               |                |                 |
| CPRC05                                                                   | 3.00             | '                | С              | 1           |          | LIMESTONE            | D               | L               | Y        | 90.0       | 76.0           | 66.0       | 43.0       | 16.60        | 57.15                                        | 5.08          | 5.40           | 1               |
| ¥0040                                                                    | <b>!</b>         | <b> </b>         | $\vdash$       | +           | $\vdash$ |                      | $\square$       | ++              | <b>!</b> | $\vdash$   | <u> </u>       | '          | <u> </u>   | '            | <b>├</b> ──'                                 |               | <b>├</b> ,     |                 |
| CPRC05                                                                   | 3.45             | '                | С              | 1           |          | LIMESTONE            | D               | L               | Y        | 100.0      | 75.8           | 66.0       | 62.0       | 10.01        | 68.57                                        | 2.13          | 2.45           | 1               |
|                                                                          | <b>├</b> ───′    | <b> </b> '       | <u> </u> '     | <b> </b> '  | $\vdash$ | <del> </del>         | $\vdash$        | ╆╾┦             | '        | $\vdash$   | –              | ──′        | –          | <b>├</b> ──′ | <b>├</b> ──┦                                 | <b> </b> '    | <b>├</b> ──┦   |                 |
| XC219-<br>CPRC05                                                         | 3.90             | '                | С              | 1           |          | LIMESTONE            | D               | L               | Y        | 65.0       | 77.9           | 74.0       | 61.0       | 21.68        | 68.94                                        | 4.56          | 5.27           | 1               |
| '                                                                        | ──′              | <b> </b> '       | <u> </u> '     | –'          | –        | <b> </b>             | <u> </u> '      | ┦──┘            | –′       | –'         | –′             | <b> </b> ' | –′         | <b> </b> '   | ──′                                          | <b> </b> '    | ┥───┦          | l               |
| XC219-<br>CPRC05                                                         | 5.10             | '                | с              | 1           |          | LIMESTONE            | D               | L               | Y        | 90.0       | 75.6           | 66.0       | 56.0       | 14.60        | 65.06                                        | 3.45          | 3.88           | 1               |
|                                                                          | <b> '</b>        | <b> </b> '       | <b> </b> '     | <b> </b> '  | —        | <b> </b>             | '               | $\vdash$        | ⊢′       | –′         | –′             | ──'        | –′         | <b> </b> '   | —                                            | <b> </b> '    | ──′            | l               |
| XC219-                                                                   | 8.75             | '                | с              | 1           |          | LIMESTONE            | D               | L               | Y        | 85.0       | 75.3           | 71.0       | 70.0       | 12.74        | 72.59                                        | 2.42          | 2.86           |                 |
| UFNUUU                                                                   | <b> '</b>        | <b> </b> '       | <u> </u> '     | <u> </u> _' | ــــ     | <b>_</b>             | <u> </u>        | <u> </u> '      | ′        | <u> </u> ' | <u> '</u>      | <u> </u> ' | <u> </u> ' | <b> </b> '   | <b>↓</b> ′                                   | <b> </b>      | <b>↓</b> ′     | <b> </b>        |
| XC219-                                                                   | 11.30            | '                | с              | 1           |          | LIMESTONE            | D               |                 | Y        | 60.0       | 75.2           | 72.0       | 64.0       | 19.64        | 69.38                                        | 4.08          | 4.73           | 1               |
| CPRCub                                                                   | <u>        '</u> | <u> </u> '       |                | <u> </u>    |          |                      | ′               |                 | <u> </u> |            | <u> </u>       | <u> </u> ' |            | <u> </u>     | <u> </u>                                     |               | <u>اا</u>      |                 |
|                                                                          | '                | '                | '              | '           |          |                      | '               | !               | 1 '      | '          | '              | '          | '          | '            | '                                            |               | /              | 1               |
|                                                                          | <u>       '</u>  | <u> </u>         |                | <u> </u>    |          |                      | ′               | <u> </u>        | <u> </u> | <u> </u>   | <u>      '</u> | <u> </u> ' | ′          | <u> </u>     | <u>                                     </u> |               |                |                 |
|                                                                          | '                | '                | '              | '           |          |                      | '               | !               | 1 '      | '          | '              | '          | '          | 1 '          | '                                            |               |                |                 |
|                                                                          | '                | '                |                |             |          |                      |                 |                 | '        | '          | '              | '          | ′          | l'           | '                                            | '             | !              |                 |
|                                                                          | <u> </u>         |                  |                | Γ'          | Γ        |                      | Γ'              | Γ !             | Γ'       | Γ'         | Γ'             | Γ '        | Γ'         | [ '          | Γ '                                          |               |                |                 |
|                                                                          | '                |                  |                |             |          |                      |                 |                 |          | '          | '              | '          | 1          | '            | '                                            |               |                | 1               |
|                                                                          |                  |                  |                | <u> </u>    |          |                      |                 | ·               |          | ·          | ·              |            | ·          |              |                                              |               |                |                 |
| 04 D-6                                                                   |                  |                  |                |             |          |                      |                 |                 |          |            |                |            |            |              |                                              | $\neg$        |                |                 |
| QA Ref         Project No         N9366-20         Figure                |                  |                  |                |             |          |                      |                 |                 |          |            |                |            |            |              |                                              |               |                |                 |
| Rev 2.10<br>Aug 17                                                       | (>               | $\left( \right)$ |                | (           |          | Prc                  | oject N         | lame            |          | Irish F    | ≀ail - C       | Cork Li    | ine        |              |                                              |               | P              | LT              |
| Ŭ                                                                        |                  | AS               |                |             |          |                      |                 |                 |          |            |                |            |            |              |                                              |               |                |                 |
|                                                                          | TEST<br>00       | ING<br>001       |                |             |          | Th                   | e results       | s reporte       | d relate | only to f  | he samr        | oles test  | ed; opin   | ions and int | terpretations                                | 3             | Shoot          | Printed         |
|                                                                          |                  | <u> </u>         | 50             | C           | OT       | <b>FEC</b> exp<br>sc | pressed h       | herein ar       | e outsid | le the sc  | ope of L       | JKAS ac    | creditati  | ion. © Copy  | /right 2017                                  |               | 12/11/20       | 020 09:13       |

1

| All specimens tested at as received water content unless shown otherwise |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
|--------------------------------------------------------------------------|-----------------------------------|---------------|--------|---------|--------|----------------|-----------------|---------------|----------|-------------|---------|-----------|-----------------------|-------------|--------------------|--------------|--------------------|-------------|--|
| Test Type                                                                |                                   |               |        |         | _      |                |                 | Diam          | etral    |             |         | A         | xial                  |             | Blo                | ock/irre     | gular lu           | mp          |  |
| D - Diametra                                                             | ll, A - Ax                        | ial, I - Irre | gular  | Lump    | о, В - | Block          |                 |               | P        |             |         |           | ΙP                    |             |                    |              |                    |             |  |
| L - parallel t                                                           | o planes                          | s of weakr    | ness   | ,       |        |                |                 |               | <u>+</u> | _           |         | . (       | +                     |             | . –                | $\checkmark$ | <u> </u>           |             |  |
| P - perpendi                                                             | cular to                          | planes of     | weal   | kness   |        |                | _ 1             |               |          |             | -       |           | $\smile$              | 1           | Lne                | ne Dps       |                    |             |  |
| Dimensions                                                               | oo hotw                           | oon nioto     | nc ( n | loton   |        | otion )        | D <sub>ps</sub> |               |          | t w         | Dp      | s ┥       | W                     | •           |                    |              | ·····•             |             |  |
| Dps' - at fail                                                           | ure                               | een plate     | ns ( p | aten    | separ  | ation )        |                 |               | >        |             |         | .↓        |                       |             |                    |              |                    |             |  |
| Lne - Length                                                             | n from p                          | latens to i   | neare  | st free | e end  |                |                 | ⊢ne           |          |             |         |           |                       |             |                    |              |                    |             |  |
| W - Width o                                                              | of short                          | est dimen     | sion p | perpe   | ndicu  | lar to load, P |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
|                                                                          |                                   |               |        |         |        |                |                 |               | 1        |             |         |           |                       |             |                    |              |                    |             |  |
|                                                                          |                                   |               |        |         | Ę      |                | Test            | Туре          | Î        |             |         |           |                       |             | er,                | Point L      | .oad Index<br>//Pa |             |  |
| <u>0</u>                                                                 | ε                                 | Ref           | ype    | Ref     | Deptl  |                | see<br>Fig 5    | ISRM<br>and 8 | IV) β    |             | Dime    | nsions    |                       | P           | amet               | - (D         | (50)0.45           |             |  |
| oreho                                                                    | pth,                              | aldr          | ple T  | imen    | nen l  | Rock type      |                 |               | Valic    |             | 1       |           | I                     |             | De<br>ent di<br>mm | F = (D       | e/50)0.45          | Remarks     |  |
| ä                                                                        | ă                                 | San           | Sam    | Spec    | pecir  |                | , I, B          | ction<br>or U | ailure   | Lne         | w       | Dps       | Dps'                  | kN          | livale             | ls           | ls(50)             |             |  |
|                                                                          |                                   |               |        |         | S      |                | (D, A           | Dire<br>(L, P | ц        | mm          | mm      | mm        | mm                    |             | edr                | 10           | 13(00)             |             |  |
|                                                                          |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
|                                                                          |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
|                                                                          |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
|                                                                          |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
|                                                                          |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
|                                                                          |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
|                                                                          |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
|                                                                          |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
|                                                                          |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
|                                                                          |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
|                                                                          |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
|                                                                          |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
|                                                                          |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
|                                                                          |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
| V0010                                                                    |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
| CPRC01A                                                                  | 8.30                              |               | С      | 1       |        | LIMESTONE      | D               | L             | Y        | 60.0        | 75.8    | 74.0      | 66.0                  | 26.60       | 70.74              | 5.32         | 6.21               | 8.30-8.45m  |  |
|                                                                          |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
| XC219-<br>CPRC01A                                                        | 8.30                              |               | с      | 2       |        | LIMESTONE      | D               | L             | Y        | 75.0        | 75.3    | 72.0      | 71.0                  | 21.97       | 73.11              | 4.11         | 4.88               | 9.01-9.17m  |  |
|                                                                          |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
| XC219-                                                                   | 5 30                              |               |        | 1       |        |                | D               | Ι.            | v        | 80.0        | 75.0    | 76.0      | 70.0                  | 16.26       | 72 90              | 3.06         | 3.63               | 6 14-6 32m  |  |
| CPRC06                                                                   | 5.50                              |               |        |         |        |                | D               |               | ,        | 80.0        | 15.9    | 70.0      | 70.0                  | 10.20       | 72.90              | 3.00         | 3.03               | 0.14-0.3211 |  |
| VC210                                                                    |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
| CPRC06                                                                   | 6.80                              |               | С      | 1       |        | LIMESTONE      | D               | L             | Y        | 110.0       | 77.7    | 77.0      | 71.0                  | 21.39       | 74.26              | 3.88         | 4.63               | 7.01-7.26m  |  |
|                                                                          |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
| XC219-                                                                   | 6.80                              |               | с      | 2       |        | LIMESTONE      | D               | L             | Y        | 90.0        | 76.1    | 76.0      | 75.0                  | 6.03        | 75.53              | 1.06         | 1.27               | 7.84-8.03m  |  |
| CFRC00                                                                   |                                   |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
| XC219-                                                                   | 2 70                              |               |        | 2       |        |                |                 |               | v        | 60.0        | 72.0    | 72.0      | 40.0                  | 21.12       | 75 52              | 1.06         | 1.07               | 5 07 5 20m  |  |
| CPRC07                                                                   | 3.70                              |               |        | 2       |        | LIMESTONE      | D               |               | T        | 60.0        | 13.2    | 72.0      | 49.0                  | 21.12       | 75.55              | 1.00         | 1.27               | 5.07-5.2011 |  |
|                                                                          |                                   | ļ             |        |         |        | •              |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
|                                                                          |                                   | I             |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
| QA Ref                                                                   | QA Ref Project No N9435-20 Figure |               |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
| Rev 2.10                                                                 |                                   |               |        |         | X      | Pi             | roject N        | ame           |          | Cork I      | Line L  | evel C    | rossin                | gs          |                    |              | Р                  | LT          |  |
| Aug 17                                                                   |                                   | <b>\$</b> ∕   |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              | •                  |             |  |
|                                                                          | UK                                | AS            |        |         |        |                |                 |               |          |             |         |           |                       |             |                    |              |                    |             |  |
|                                                                          | 00                                | 01            |        | -       | ~      |                | he results      | reported      | d relate | only to the | ne samp | les teste | ed; opini<br>creditat | ons and int | erpretations       |              | Sheet              | Printed     |  |
|                                                                          |                                   |               |        |         |        |                | OCOTEC          | LIK Limi      | ted      |             |         |           |                       |             | 5                  |              | 04/11/2            | 020 11:34   |  |

| All specimen                                   | s tested              | at as rec | eived v          | vater c    | onten       | t unless showr | n other                         | wise                             |                               |                |                      |                      |                         |                            |                            |                |                   |                      |
|------------------------------------------------|-----------------------|-----------|------------------|------------|-------------|----------------|---------------------------------|----------------------------------|-------------------------------|----------------|----------------------|----------------------|-------------------------|----------------------------|----------------------------|----------------|-------------------|----------------------|
| Test Type                                      |                       |           |                  | 1          |             | Diaste         |                                 | Diam                             | etral                         |                |                      | A                    | kial                    |                            | Blo                        | ck/irreg       | gular lu          | mp                   |
| D - Diametra<br>Direction (                    | ii, A - Ax<br>U = unk | nown or   | regular<br>rando | Lump<br>m) | ), В -      | BIOCK          |                                 |                                  | P                             |                |                      |                      | P                       |                            |                            | _              | P                 | <b>▲</b>             |
| L - parallel te                                | o planes              | s of weal | kness<br>of wool | knoss      |             |                | <b>^</b>                        |                                  | *                             |                |                      |                      |                         |                            | L <sub>ne</sub>            |                | * /               | D <sub>ps</sub>      |
| Dimensions                                     | cular lo              | planes    | or wear          | (ness      |             | l              | D <sub>ps</sub>                 |                                  |                               |                | Dp                   | s 🔺                  |                         | •                          |                            |                |                   | <b>* *</b>           |
| Dps - Distan<br>Dps' - at fail                 | ce betw               | een plat  | ens ( p          | laten      | separ       | ation)         | *                               | ا                                | •                             |                |                      | ţ                    | W                       | J                          |                            | W              |                   |                      |
| Lne - Length                                   | n from p              | latens to | neare            | st free    | end end     |                | I                               | L <sub>ne</sub>                  |                               |                |                      |                      |                         |                            |                            |                |                   |                      |
| W - Width o                                    | of short              | est dime  | nsion            | perpe      | ndicu       | lar to load, P |                                 |                                  |                               |                |                      |                      |                         |                            |                            |                |                   |                      |
|                                                |                       | 1         | _                |            | <del></del> |                |                                 |                                  |                               | 1              |                      |                      |                         |                            |                            |                |                   |                      |
|                                                |                       |           |                  | sf         | ţ           |                | Test<br>see                     | Type<br>ISRM                     | (N)                           |                | Dime                 | nsions               |                         | LOAD                       | eter,                      | Point Lo<br>Mi | ad Index<br>Pa    |                      |
| ole                                            | E<br>ć                | e Ref     | Type             | en Re      | n Dep       | <b>D</b> 1 1   | Fig 5                           | and 8                            | ulid (Y                       |                | 2                    |                      |                         | Р                          | e<br>diame<br>n            | F = (De        | /50)0.45          | Remarks              |
| Bore                                           | Deptl                 | ampl      | ample            | becim      | scime       | Коск туре      | , B                             | u (Û                             | ure Va                        | 1              | 14/                  | Dee                  | Drad                    |                            | De<br>Dent<br>mr           |                |                   |                      |
|                                                |                       | 05        | Ś                | ŝ          | Spe         |                | Type<br>0, A, I                 | Directi<br>, P ol                | Failt                         | mm             | mm                   | mm                   | mm                      | kN                         | equiv                      | ls             | ls(50)            |                      |
|                                                |                       |           |                  |            |             |                | 5                               | 1 L                              |                               |                |                      |                      |                         |                            |                            |                |                   |                      |
| XC219-<br>CPRC07                               | 6.70                  |           | С                | 1          |             | LIMESTONE      | A                               | Ρ                                | Y                             |                | 74.4                 | 41.0                 | 38.0                    | 8.60                       | 59.99                      | 2.39           | 2.59              | 6.96-7.24m           |
| XC219-<br>CPRC07                               | 6.70                  |           | с                | 2          |             | LIMESTONE      | D                               | L                                | Y                             | 70.0           | 73.8                 | 76.0                 | 71.0                    | 0.97                       | 72.37                      | 0.19           | 0.22              | 6.80-6.96m           |
| XC219-<br>CPRC07                               | 8.20                  |           | с                | 2          |             | LIMESTONE      | D                               | L                                | Y                             | 140.0          | 74.8                 | 74.0                 | 56.0                    | 18.59                      | 59.89                      | 5.89           | 6.39              | 9.35-9.63m           |
|                                                |                       |           |                  |            |             |                |                                 |                                  |                               |                |                      |                      |                         |                            |                            |                |                   |                      |
|                                                |                       |           |                  | <u> </u>   |             |                |                                 |                                  |                               |                |                      |                      |                         |                            |                            |                |                   |                      |
|                                                |                       |           |                  |            |             |                |                                 |                                  |                               |                |                      |                      |                         |                            |                            |                |                   |                      |
|                                                |                       |           |                  |            |             |                |                                 |                                  |                               |                |                      |                      |                         |                            |                            |                |                   |                      |
|                                                |                       |           |                  |            |             |                |                                 |                                  |                               |                |                      |                      |                         |                            |                            |                |                   |                      |
|                                                |                       |           |                  |            |             |                |                                 |                                  |                               |                |                      |                      |                         |                            |                            |                |                   |                      |
|                                                |                       |           |                  |            |             |                |                                 |                                  |                               |                |                      |                      |                         |                            |                            |                |                   |                      |
|                                                |                       |           |                  |            |             |                |                                 |                                  |                               |                |                      |                      |                         |                            |                            |                |                   |                      |
|                                                |                       |           | $\top$           |            |             |                |                                 |                                  |                               |                |                      |                      |                         |                            |                            |                |                   |                      |
|                                                |                       |           | -                | $\vdash$   |             |                |                                 |                                  |                               |                |                      |                      |                         |                            |                            |                |                   |                      |
|                                                |                       |           |                  |            |             |                |                                 |                                  |                               |                |                      |                      |                         |                            |                            |                |                   |                      |
|                                                |                       |           |                  |            |             |                |                                 |                                  |                               |                |                      |                      |                         |                            |                            |                |                   |                      |
|                                                | -                     |           |                  |            |             |                |                                 |                                  |                               |                | •                    |                      |                         |                            |                            |                |                   |                      |
| <b>QA Ref</b><br>ISRM 85<br>Rev 2.10<br>Aug 17 |                       |           |                  | (          |             | Pro            | oject N<br>oject N              | o<br>ame                         |                               | N943<br>Cork I | 5-20<br>Line L       | evel C               | rossin                  | gs                         |                            |                | Figure<br>P       | LT                   |
|                                                | 00                    | 01        | so               |            | 01          |                | e results<br>pressed I<br>COTEC | reported<br>herein ar<br>UK Limi | d relate o<br>e outsid<br>ted | only to the sc | ne samp<br>cope of l | les teste<br>JKAS ac | ed; opinio<br>creditati | ons and inte<br>on. © Copy | erpretations<br>right 2017 |                | Sheet<br>04/11/20 | Printed<br>020 11:34 |

1

| All speciment                   | s tested                                                                                                                                   | at as recei   | ved w          | /ater c    | onten  | t unless showr | n other                | wise           |                        |                |                      |                      |                        |                            |                            |             |          |                 |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|------------|--------|----------------|------------------------|----------------|------------------------|----------------|----------------------|----------------------|------------------------|----------------------------|----------------------------|-------------|----------|-----------------|
| Test Type                       | est Type Diametral Axial Block/irregular lump<br>- Diametral, A - Axial, I - Irregular Lump, B - Block<br>irection (U = unknown or random) |               |                |            |        |                |                        |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
| D - Diametra                    | l, A - Ax                                                                                                                                  | ial, I - Irre | gular<br>andor | Lump       | о, В - | Block          |                        |                | P                      |                |                      |                      | ΙP                     |                            |                            | -           | ,<br>P   |                 |
| L - parallel to                 | o = unk<br>o planes                                                                                                                        | s of weakr    | ness           | ,          |        |                |                        |                | •                      | _              |                      | . (                  | +                      |                            | . –                        |             | <b>V</b> |                 |
| P - perpendi                    | cular to                                                                                                                                   | planes of     | weal           | kness      |        |                | _ 1                    |                |                        |                | _                    |                      | $\smile$               | 1                          | L <sub>ne</sub>            | <u> / _</u> | /        | D <sub>ps</sub> |
| Dimensions                      |                                                                                                                                            |               |                |            |        |                | D <sub>ps</sub>        |                |                        | tw             | Dp                   | s ┥                  |                        | •                          |                            |             | ····· ►  |                 |
| Dps - Distan<br>Dps' - at faili | ce betw<br>Ire                                                                                                                             | een platei    | ns ( p         | laten      | separ  | ation )        | • •                    |                | •                      |                |                      | .↓                   | vv                     | J                          |                            | vv          |          |                 |
| Lne - Length                    | from p                                                                                                                                     | latens to r   | neare          | st free    | e end  |                |                        | -ne            |                        |                |                      |                      | $\smile$               |                            |                            |             |          |                 |
| W - Width o                     | of shorte                                                                                                                                  | est dimen     | sion p         | perpe      | ndicu  | lar to load, P |                        |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
|                                 |                                                                                                                                            |               |                |            |        |                |                        |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
|                                 |                                                                                                                                            |               |                |            |        |                | Test                   | Type           | -                      |                |                      |                      |                        |                            | <u>.</u>                   | Point Lo    | ad Index |                 |
|                                 | _                                                                                                                                          | đ             | be             | Ref        | epth   |                | see                    | ISRM           | Ň                      |                | Dime                 | nsions               |                        | LOAD<br>P                  | nete                       | M           | Pa       |                 |
| shole                           | th, m                                                                                                                                      | le R          | e Ty           | Jen F      | en D   | Rock type      | Fig 5                  | and 8          | alid                   |                |                      |                      |                        |                            | be<br>t diai               | F = (De/    | /50)0.45 | Remarks         |
| Bore                            | Dep                                                                                                                                        | amp           | ampl           | pecin      | scime  | ricon type     | B ,                    | ъĴ             | ure V                  | 1.00           | \A/                  | Daa                  | Deel                   |                            | alen<br>T                  |             |          |                 |
|                                 |                                                                                                                                            | 05            | ũ              | ц <u>х</u> | Spe    |                | Type<br>, A, I         | irecti<br>P ol | Failt                  | mm             | mm                   | mm                   | mm                     | kN                         | vinpe                      | ls          | ls(50)   |                 |
|                                 |                                                                                                                                            |               |                |            |        |                | Ð                      | ز_ ۵           |                        |                |                      |                      |                        |                            | Ű                          |             |          |                 |
| XC219-                          | E 40                                                                                                                                       |               | ~              | 1          |        |                |                        |                | V                      | 150.0          | 75.0                 | 74.0                 | 70.0                   | 22.66                      | 70.40                      | 4.00        | E 10     | E CO E 00m      |
| CPRC08                          | 5.40                                                                                                                                       |               | C              | '          |        | LINESTONE      |                        |                | ř                      | 150.0          | 75.0                 | 74.0                 | 70.0                   | 22.00                      | 72.40                      | 4.32        | 5.10     | 2.00-2.9011     |
|                                 |                                                                                                                                            |               |                |            |        |                | 1                      |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
| XC219-<br>CPRC08                | 5.40                                                                                                                                       |               | С              | 2          |        | LIMESTONE      | А                      | Р              | Y                      |                | 75.4                 | 66.0                 | 64.0                   | 17.01                      | 78.37                      | 2.77        | 3.39     | 5.60-5.90m      |
|                                 |                                                                                                                                            |               |                |            |        |                |                        |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
| XC219-                          | 5 40                                                                                                                                       |               | С              | 3          |        | LIMESTONE      | D                      |                | Y                      | 130.0          | 76.0                 | 71.0                 | 66.0                   | 18 20                      | 70.82                      | 3 63        | 4 24     | 6.10-6.39m      |
| CPRC08                          | 0.10                                                                                                                                       |               | Ũ              | Ŭ          |        |                |                        | -              |                        | 100.0          | 10.0                 | 7 1.0                | 00.0                   | 10.20                      | 10.02                      | 0.00        | 1.21     |                 |
| VC240                           |                                                                                                                                            |               |                |            |        |                |                        |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
| CPRC08                          | 5.40                                                                                                                                       |               | С              | 4          |        | LIMESTONE      | А                      | Р              | Y                      |                | 75.5                 | 56.0                 | 55.0                   | 12.04                      | 72.70                      | 2.28        | 2.70     | 6.10-6.39m      |
|                                 |                                                                                                                                            |               |                |            |        |                |                        |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
| XC219-                          | 6.90                                                                                                                                       |               | с              | 1          |        | LIMESTONE      | А                      | Р              | Y                      |                | 73.5                 | 58.0                 | 53.0                   | 17.80                      | 70.41                      | 3.59        | 4.19     | 7.97-8.02m      |
| CPRC08                          | 0.00                                                                                                                                       |               | Ŭ              |            |        |                |                        |                | •                      |                | . 010                | 0010                 | 0010                   |                            |                            | 0.00        |          |                 |
| XC210-                          |                                                                                                                                            |               |                |            |        |                |                        |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
| CPRC08                          | 6.90                                                                                                                                       |               | С              | 2          |        | LIMESTONE      | I                      | Р              | Y                      | 35.0           | 75.1                 | 41.0                 | 36.0                   | 11.18                      | 58.67                      | 3.25        | 3.49     | 7.97-8.02m      |
|                                 |                                                                                                                                            |               |                |            |        |                |                        |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
| XC219-                          | 6.90                                                                                                                                       |               | С              | 3          |        | LIMESTONE      | А                      | Р              | Y                      |                | 75.3                 | 41.0                 | 39.0                   | 7.89                       | 61.14                      | 2.11        | 2.31     | 8.36-8.40m      |
|                                 |                                                                                                                                            |               |                |            |        |                |                        |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
| XC219-                          | 0.00                                                                                                                                       |               | ~              |            |        |                | Ι.                     |                | V                      | 40.0           | 70.0                 | 40.0                 | 44.0                   | 40.47                      | 00.07                      | 0.04        | 0.00     | 0.00.0.40       |
| CPRC08                          | 6.90                                                                                                                                       |               | C              | 4          |        | LIMESTONE      |                        | Р              | Y                      | 40.0           | 76.0                 | 43.0                 | 41.0                   | 10.47                      | 62.97                      | 2.64        | 2.93     | 8.36-8.40m      |
|                                 |                                                                                                                                            |               |                |            |        |                |                        |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
|                                 |                                                                                                                                            |               |                |            |        |                | 1                      |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
|                                 |                                                                                                                                            |               |                |            |        |                | -                      |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
|                                 |                                                                                                                                            |               |                |            |        |                |                        |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
|                                 |                                                                                                                                            |               |                |            |        |                |                        |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
|                                 |                                                                                                                                            |               |                |            |        |                |                        |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
|                                 |                                                                                                                                            |               |                |            |        |                | 1                      |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
|                                 |                                                                                                                                            |               |                |            |        |                | 1                      |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
|                                 |                                                                                                                                            |               |                |            |        |                | 1                      |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
|                                 |                                                                                                                                            |               |                |            |        |                |                        |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
|                                 |                                                                                                                                            |               |                |            |        |                |                        |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
| 04.8-6                          |                                                                                                                                            |               |                |            |        |                |                        |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
| ISRM 85                         | Project No N9436-20 Figure                                                                                                                 |               |                |            |        |                |                        |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
| Rev 2.10                        |                                                                                                                                            | t)            |                | -          |        | Pro            | oject N                | ame            |                        | Cork I         | Line L               | evel C               | rossin                 | gs                         |                            |             | Р        | LT              |
| Aug 17                          |                                                                                                                                            | シ             |                |            | X      |                |                        |                |                        |                |                      |                      |                        |                            |                            |             |          |                 |
|                                 | U K<br>TEST                                                                                                                                |               |                |            | /      |                |                        |                |                        |                |                      |                      |                        |                            |                            | _           |          |                 |
|                                 | 00                                                                                                                                         | 01            | -              | C          | 07     |                | e results<br>pressed l | reported       | l relate o<br>e outsic | only to the sc | ne samp<br>cope of L | les teste<br>JKAS ac | ed; opini<br>creditati | ons and inte<br>on. © Copy | erpretations<br>right 2017 |             | Sheet    | Printed         |

# **Uniaxial Compressive Strength Of Rock - Summary of Results**

|                        |                                                           | Sarr                                                                      | nple                                                              |                                                     |                                                                                                             | Sp<br>Dir                                                | pecime<br>mensio                                 | n<br>ns <sup>2</sup>                        | Bulk                                                   | \M/ater              |                | Uniaxia         | al Compressio                                                                    | n <sup>3</sup>     |                                            |
|------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|---------------------------------------------|--------------------------------------------------------|----------------------|----------------|-----------------|----------------------------------------------------------------------------------|--------------------|--------------------------------------------|
| Hole No.               | No                                                        | Dept                                                                      | h (m)                                                             | type                                                | Rock Type                                                                                                   | Dia.                                                     | Height                                           | H/D                                         | Density <sup>2</sup>                                   | Content <sup>1</sup> | Stress<br>Rate | Time to failure | Mode of failure                                                                  | UCS                | Remarks                                    |
|                        | 140.                                                      | from                                                                      | to                                                                | 'yp~                                                | !                                                                                                           | mm                                                       | mm                                               |                                             | Mg/m <sup>3</sup>                                      | %                    | MPa/s          | secs            |                                                                                  | MPa                |                                            |
| XC219-CPRC02           |                                                           | 6.25                                                                      | 6.58                                                              | с                                                   | LIMESTONE                                                                                                   | 75.6                                                     | 187.7                                            | 2.5                                         | 2.66                                                   | 0.2                  | 0.1            | 224             | shear                                                                            | 19                 |                                            |
| XC219-CPRC02           |                                                           | 8.75                                                                      | 9.25                                                              | с                                                   | LIMESTONE                                                                                                   | 75.5                                                     | 198.3                                            | 2.6                                         | 2.67                                                   | 0.1                  | 0.1            | 305             | axial cleavage                                                                   | 25.1               |                                            |
| XC219-CPRC02           |                                                           | 11.85                                                                     | 12.40                                                             | С                                                   | LIMESTONE                                                                                                   | 75.3                                                     | 199.8                                            | 2.7                                         | 2.66                                                   | 0.1                  | 0.1            | 248             | axial cleavage                                                                   | 30.2               |                                            |
| XC219-CPRC02           |                                                           | 13.95                                                                     | 14.42                                                             | с                                                   | LIMESTONE                                                                                                   | 75.4                                                     | 197.0                                            | 2.6                                         | 2.67                                                   | 0.1                  | 0.1            | 328             | axial cleavage                                                                   | 18.9               |                                            |
| XC219-CPRC04           |                                                           | 4.75                                                                      | 5.25                                                              | с                                                   | LIMESTONE                                                                                                   | 75.3                                                     | 198.8                                            | 2.6                                         | 2.68                                                   | 0.1                  | 0.1            | 329             | axial cleavage                                                                   | 39.4               |                                            |
| XC219-CPRC04           |                                                           | 6.70                                                                      | 7.02                                                              | с                                                   | LIMESTONE                                                                                                   | 75.6                                                     | 199.4                                            | 2.6                                         | 2.68                                                   | 0.1                  | 0.1            | 480             | shear                                                                            | 12.8               |                                            |
| XC219-CPRC05           |                                                           | 5.10                                                                      | 5.50                                                              | с                                                   | LIMESTONE                                                                                                   | 75.6                                                     | 199.1                                            | 2.6                                         | 2.69                                                   | 0.3                  | 0.1            | 296             | multiple shear                                                                   | 24.5               |                                            |
| XC219-CPRC05           |                                                           | 8.75                                                                      | 9.30                                                              | с                                                   | LIMESTONE                                                                                                   | 75.4                                                     | 196.4                                            | 2.6                                         | 2.69                                                   | 0.2                  | 0.1            | 338             | axial cleavage                                                                   | 20.2               |                                            |
| XC219-CPRC05           |                                                           | 11.55                                                                     | 12.00                                                             | с                                                   | LIMESTONE                                                                                                   | 75.5                                                     | 202.5                                            | 2.7                                         | 2.70                                                   | 0                    | 0.1            | 400             | axial cleavage                                                                   | 24.9               |                                            |
|                        |                                                           |                                                                           |                                                                   |                                                     |                                                                                                             |                                                          |                                                  |                                             |                                                        |                      |                |                 |                                                                                  |                    |                                            |
| Notes :<br>1<br>2<br>3 | Test Spec<br>ISRM p87<br>ISRM p86<br>ISRM p15<br>above no | cification :<br>7 test 1, wa<br>6 clause (\<br>53 part 1, d<br>otes apply | Internati<br>ater conte<br>/ii), Calipe<br>determina<br>unless an | ional Soc<br>int at 105<br>ir methoc<br>ition of Ui | iety for Rock Mech<br>± 3 oC, specimen<br>J used for determin<br>niaxial Compressiv<br>otherwise in the rei | hanics, T<br>as recei<br>nation of<br>/e Streng<br>marks | he compl<br>ved at the<br>bulk volu<br>oth ( UCS | lete ISR<br>e labora<br>me and<br>5 ) of Ro | M suggested<br>tory<br>derivation of t<br>ck Materials | methods for Ro       | ock Chara      | cterizatio      | n Testing and Mon<br>Mode of failure :<br>S - Single shear<br>AC - Axial cleavag | itoring, 200<br>ge | 7<br>MS - multiple shear<br>F - Fragmented |
| QA Ref                 |                                                           | 5546                                                                      |                                                                   |                                                     |                                                                                                             | Broi                                                     | ioot No                                          |                                             | Noce                                                   | 2.00                 |                |                 |                                                                                  | Figure             | 1                                          |

 

 QA Ref RLR 2 Rev 2.19 Apr 19
 Image: Constant of the samples tested; opinions and interpretations OO01
 Figure

 Image: Constant of the samples tested; opinions and interpretations SOCOTEC UK Limited
 Project No
 N9366-20

 Image: Constant of the samples tested; opinions and interpretations SOCOTEC UK Limited
 Project No
 N9366-20

# Uniaxial Compressive Strength Of Rock - Summary of Results

|                                              |                                                       | San                                                                   | nple                                                             |                                                                 |                                                                                                            | Sı<br>Dir                                                | oecime<br>nensio                              | n<br>ns <sup>2</sup>                        | Bulk                                                   | Water                            |                           | Uniaxia                | al Compressio                                                                   | on <sup>3</sup> |                                            |
|----------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|---------------------------------------------|--------------------------------------------------------|----------------------------------|---------------------------|------------------------|---------------------------------------------------------------------------------|-----------------|--------------------------------------------|
| Hole No.                                     | No                                                    | Dept                                                                  | h (m)                                                            | type                                                            | Rock Type                                                                                                  | Dia.                                                     | Height                                        | H/D                                         | Density <sup>2</sup>                                   | Content <sup>1</sup>             | Stress<br>Rate            | Time to<br>failure     | Mode of failure                                                                 | UCS             | Remarks                                    |
|                                              | NO.                                                   | from                                                                  | to                                                               | type                                                            |                                                                                                            | mm                                                       | mm                                            |                                             | Mg/m <sup>3</sup>                                      | %                                | MPa/s                     | secs                   |                                                                                 | MPa             |                                            |
| XC219-CPRC01                                 |                                                       | 8.00                                                                  | 9.50                                                             | С                                                               | LIMESTONE                                                                                                  | 75.0                                                     | 186.5                                         | 2.5                                         | 2.63                                                   | 0.2                              | 0.1                       | 468                    | axial cleavage                                                                  | 36.9            |                                            |
| XC219-CPRC06                                 |                                                       | 8.30                                                                  | 9.80                                                             | С                                                               | LIMESTONE                                                                                                  | 75.6                                                     | 207.0                                         | 2.7                                         | 2.68                                                   | 0.1                              | 0.1                       | 323                    | axial cleavage                                                                  | 50.2            |                                            |
| XC219-CPRC07                                 |                                                       | 6.70                                                                  | 8.20                                                             | С                                                               | LIMESTONE                                                                                                  | 75.0                                                     | 207.1                                         | 2.8                                         | 2.68                                                   | 0.1                              | 0.2                       | 380                    | axial cleavage                                                                  | 60.5            |                                            |
|                                              |                                                       |                                                                       |                                                                  |                                                                 |                                                                                                            |                                                          |                                               |                                             |                                                        |                                  |                           |                        |                                                                                 |                 |                                            |
|                                              |                                                       |                                                                       |                                                                  |                                                                 |                                                                                                            |                                                          |                                               |                                             |                                                        |                                  |                           |                        |                                                                                 |                 |                                            |
|                                              |                                                       |                                                                       |                                                                  |                                                                 |                                                                                                            |                                                          |                                               |                                             |                                                        |                                  |                           |                        |                                                                                 |                 |                                            |
|                                              |                                                       |                                                                       |                                                                  |                                                                 |                                                                                                            |                                                          |                                               |                                             |                                                        |                                  |                           |                        |                                                                                 |                 |                                            |
|                                              |                                                       |                                                                       |                                                                  |                                                                 |                                                                                                            |                                                          |                                               |                                             |                                                        |                                  |                           |                        |                                                                                 |                 |                                            |
|                                              |                                                       |                                                                       |                                                                  |                                                                 |                                                                                                            |                                                          |                                               |                                             |                                                        |                                  |                           |                        |                                                                                 |                 |                                            |
|                                              |                                                       |                                                                       |                                                                  |                                                                 |                                                                                                            |                                                          |                                               |                                             |                                                        |                                  |                           |                        |                                                                                 |                 |                                            |
| Notes :<br>1<br>2<br>3                       | Test Spe<br>ISRM p8<br>ISRM p8<br>ISRM p1<br>above no | cification :<br>7 test 1, w<br>6 clause (\<br>53 part 1,<br>tes apply | Internat<br>ater conte<br>vii), Calipe<br>determina<br>unless an | ional Soc<br>ent at 105<br>er methoc<br>tion of Un<br>notated c | iety for Rock Mecł<br>± 3 oC, specimen<br>I used for determin<br>niaxial Compressiv<br>therwise in the rer | nanics, T<br>as recei<br>aation of<br>ve Streng<br>narks | he comp<br>ved at th<br>bulk volu<br>th ( UCS | lete ISR<br>e labora<br>me and<br>i ) of Ro | M suggested<br>tory<br>derivation of l<br>ck Materials | methods for Ro                   | ock Chara                 | cterizatio             | n Testing and Mor<br>Mode of failure :<br>S - Single shear<br>AC - Axial cleava | nitoring, 200   | 7<br>MS - multiple shear<br>F - Fragmented |
| <b>QA Ref</b><br>RLR 2<br>Rev 2.19<br>Apr 19 |                                                       |                                                                       |                                                                  | 6                                                               |                                                                                                            | Proj<br>Proj                                             | ect No                                        | me                                          | N943<br>Cork L                                         | 5-20<br>.ine Level (             | Crossinę                  | gs                     |                                                                                 | Figure          | RUCS                                       |
|                                              | TESTI<br>000                                          | <b>NG</b><br>1                                                        | so                                                               |                                                                 | DTEC                                                                                                       | The<br>expr<br>SOC                                       | results re<br>essed he<br>OTEC U              | eported<br>erein are                        | relate only to t<br>outside the s                      | the samples test<br>cope of UKAS | sted; opini<br>accreditat | ons and i<br>ion. © Co | nterpretations<br>pyright 2019                                                  | Printe          | d: 04/11/2020 11:35                        |

# Uniaxial Compressive Strength Of Rock - Summary of Results

|                                              |                                                       | San                                                                                | nple                                                              |                                                    |                                                                                                           | Sı<br>Dir                                     | pecime<br>mensic                                   | en<br>ons <sup>2</sup>                         | Bulk                                                     | Water                           |                           | Uniaxia                 | al Compressio                                                                   | on <sup>3</sup> |                                                             |
|----------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|------------------------------------------------|----------------------------------------------------------|---------------------------------|---------------------------|-------------------------|---------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------|
| Hole No.                                     | No.                                                   | Dept                                                                               | :h (m)                                                            | type                                               | Rock Type                                                                                                 | Dia.                                          | Height                                             | H/D                                            | Density <sup>2</sup>                                     | Content <sup>1</sup>            | Stress<br>Rate            | Time to<br>failure      | Mode of failure                                                                 | UCS             | Remarks                                                     |
|                                              | 1.0.                                                  | from                                                                               | to                                                                | 'yp~                                               |                                                                                                           | mm                                            | mm                                                 |                                                | Mg/m 3                                                   | %                               | MPa/s                     | secs                    |                                                                                 | MPa             |                                                             |
| XC219-CPRC08                                 |                                                       | 5.40                                                                               | 6.90                                                              | с                                                  | SILTSTONE                                                                                                 | 75.5                                          | 172.5                                              | 2.3                                            | 2.69                                                     | 0.1                             | 0.1                       | 246                     | axial cleavage                                                                  | 37.5            | Outside ISRM<br>Specification. Tested<br>between 6.48-6.82m |
| XC219-CPRC08                                 |                                                       | 6.90                                                                               | 8.40                                                              | с                                                  | SILTSTONE                                                                                                 | 75.4                                          | 205.8                                              | 2.7                                            | 2.69                                                     | 0.3                             | 0.1                       | 393                     | axial cleavage                                                                  | 61              |                                                             |
|                                              |                                                       |                                                                                    |                                                                   |                                                    |                                                                                                           |                                               |                                                    |                                                |                                                          |                                 |                           |                         |                                                                                 |                 |                                                             |
|                                              |                                                       |                                                                                    |                                                                   |                                                    |                                                                                                           |                                               |                                                    |                                                |                                                          |                                 |                           |                         |                                                                                 |                 |                                                             |
|                                              |                                                       |                                                                                    |                                                                   |                                                    |                                                                                                           |                                               |                                                    |                                                |                                                          |                                 |                           |                         |                                                                                 |                 |                                                             |
|                                              |                                                       |                                                                                    |                                                                   |                                                    |                                                                                                           |                                               |                                                    |                                                |                                                          |                                 |                           |                         |                                                                                 |                 |                                                             |
|                                              |                                                       |                                                                                    |                                                                   |                                                    |                                                                                                           |                                               |                                                    |                                                |                                                          |                                 |                           |                         |                                                                                 |                 |                                                             |
|                                              |                                                       |                                                                                    |                                                                   |                                                    |                                                                                                           |                                               |                                                    |                                                |                                                          |                                 |                           |                         |                                                                                 |                 |                                                             |
|                                              |                                                       |                                                                                    |                                                                   |                                                    |                                                                                                           |                                               |                                                    |                                                |                                                          |                                 |                           |                         |                                                                                 |                 |                                                             |
|                                              |                                                       |                                                                                    |                                                                   |                                                    |                                                                                                           |                                               |                                                    |                                                |                                                          |                                 |                           |                         |                                                                                 |                 |                                                             |
| Notes :<br>1<br>2<br>3                       | Test Spe<br>ISRM p8<br>ISRM p8<br>ISRM p1<br>above nc | cification :<br>7 test 1, w<br>6 clause ( <sup>,</sup><br>53 part 1,<br>otes apply | Internati<br>ater conte<br>vii), Calipe<br>determina<br>unless an | ional Soc<br>ent at 105<br>er methoc<br>ation of U | iety for Rock Mecl<br>± 3 oC, specimen<br>1 used for determir<br>niaxial Compressi<br>otherwise in the re | hanics, T<br>I as receination of<br>Ve Strenç | ່ he comp<br>ived at th<br>bulk volu<br>gth ( UC\$ | lete ISR<br>le labora<br>lime and<br>3 ) of Ro | M suggested<br>itory<br>derivation of f<br>ick Materials | methods for Robulk density      | ock Chara                 | cterizatio              | n Testing and Mor<br>Mode of failure :<br>S - Single shear<br>AC - Axial cleava | nitoring, 200   | I7<br>MS - multiple shear<br>F - Fragmented                 |
| <b>QA Ref</b><br>RLR 2<br>Rev 2.19<br>Apr 19 |                                                       |                                                                                    |                                                                   | 9                                                  |                                                                                                           | Proj<br>Proj                                  | ject No<br>ject Na                                 | ıme                                            | N9436<br>Cork L                                          | 3-20<br>_ine Level (            | Crossinę                  | js                      |                                                                                 | Figure          | RUCS                                                        |
|                                              | TESTI<br>000                                          | NG<br>)1                                                                           | SC                                                                |                                                    | DTEC                                                                                                      | The                                           | results ressed he                                  | eported<br>erein are                           | relate only to t<br>outside the s                        | the samples tes<br>cope of UKAS | sted; opini<br>accreditat | ions and i<br>ion. © Co | nterpretations<br>pyright 2019                                                  | Printe          | d: 04/11/2020 08:11                                         |



Certificate Number 20-19523

Client Socotec - Geotechnical Lab Askern Road Doncaster DN6 8DG

- Our Reference 20-19523
- Client Reference N9366-20
  - Order No N20-O-2198
  - Contract Title Irish Rail- Cork Line
  - Description 13 Concrete samples.
  - Date Received 06-Oct-20
  - Date Started 06-Oct-20
- Date Completed 16-Oct-20
- Test Procedures Identified by prefix DETSn (details on request).
  - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager



16-Oct-20



# **Summary of Chemical Analysis**

### **Concrete Samples**

Our Ref 20-19523 Client Ref N9366-20 Contract Title Irish Rail- Cork Line

|                                  |                           |        | Lab No          | 1738512   | 1738513     | 1738514     | 1738515   | 1738516   | 1738517   | 1738518   | 1738519   | 1738520   | 1738521   | 1738522   |
|----------------------------------|---------------------------|--------|-----------------|-----------|-------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                                  |                           |        |                 | XC219-    | XC219-      | XC219-      | XC219-    | XC219-    | XC219-    | XC219-    | XC219-    | XC219-    | XC219-    | XC219-    |
|                                  |                           | Sa     | mple ID         | CPRC02    | CPRC02      | CPRC02      | CPRC03    | CPRC03    | CPR203    | CPRC04    | CPRC04    | CPR204    | CPRC05    | CPRC05    |
|                                  |                           |        | Depth           | 3.90-4.00 | 11.85-12.40 | 14.62-14.78 | 6.75-6.90 | 8.00-8.13 | 9.25-9.30 | 3.70-3.88 | 6.70-7.02 | 2.70-2.80 | 3.00-3.20 | 5.10-5.50 |
|                                  |                           | C      | <b>Other ID</b> |           |             |             |           |           |           |           |           |           |           |           |
|                                  |                           | Samp   | )le Type        | ES        | ES          | ES          | ES        | ES        | ES        | ES        | ES        | ES        | ES        | ES        |
|                                  |                           | Sampli | ng Date         | n/s       | n/s         | n/s         | n/s       | n/s       | n/s       | n/s       | n/s       | n/s       | n/s       | n/s       |
|                                  |                           | Sampli | ng Time         | n/s       | n/s         | n/s         | n/s       | n/s       | n/s       | n/s       | n/s       | n/s       | n/s       | n/s       |
| Test                             | Method                    | LOD    | Units           |           |             |             |           |           |           |           |           |           |           |           |
| Inorganics                       |                           |        |                 |           |             |             |           |           |           |           |           |           |           |           |
| Sulphate Aqueous Extract as SO4  | DETSC 2076#               | 10     | mg/l            | 750       | 77          | 61          | 15        | 12        | 12        | 17        | 34        | 34        | 23        | 45        |
| Sulphate, Total Potential as SO4 | *                         | 0.03   | %               | 0.27      | < 0.03      | < 0.03      | < 0.03    | < 0.03    | < 0.03    | < 0.03    | 0.09      | 0.05      | 0.04      | 0.03      |
| Sulphide, Oxidisable as SO4      | *                         | 0.01   | %               | 0.12      | < 0.01      | < 0.01      | < 0.01    | < 0.01    | < 0.01    | < 0.01    | 0.06      | 0.03      | 0.02      | < 0.01    |
| Sulphur as S. Total              | DETCO 2220                | 0.01   | 0/              | 0.00      | < 0.01      | < 0.01      | < 0.01    | < 0.01    | < 0.01    | < 0.01    | 0.03      | 0.02      | 0.01      | 0.01      |
|                                  | DETSC 2320                | 0.01   | %               | 0.09      | < 0.01      | < 0.01      | × 0.01    |           | 11        |           |           |           | · · · · · |           |
| Sulphate as SO4, Total           | DETSC 2320<br>DETSC 2321# | 0.01   | %               | 0.09      | 0.03        | 0.03        | 0.02      | 0.02      | 0.02      | 0.02      | 0.03      | 0.02      | 0.02      | 0.03      |



# **Summary of Chemical Analysis**

### **Concrete Samples**

Our Ref 20-19523 Client Ref N9366-20 Contract Title Irish Rail- Cork Line

|                                  |             |       | Lab No   | 1738523 | 1738524     |
|----------------------------------|-------------|-------|----------|---------|-------------|
|                                  |             |       | -        | XC219-  | XC219-      |
|                                  |             | Sa    | ample ID | CPRC05  | CPRC05      |
|                                  |             |       | Depth    | 8.75    | 11.30-11.40 |
|                                  |             |       | Other ID |         |             |
|                                  |             | Sam   | ple Type | ES      | ES          |
|                                  |             | Sampl | ing Date | n/s     | n/s         |
|                                  |             | Sampl | ing Time | n/s     | n/s         |
| Test                             | Method      | LOD   | Units    |         |             |
| Inorganics                       |             |       |          |         |             |
| Sulphate Aqueous Extract as SO4  | DETSC 2076# | 10    | mg/l     | 76      | 1300        |
| Sulphate, Total Potential as SO4 | *           | 0.03  | %        | 0.06    | 0.59        |
| Sulphide, Oxidisable as SO4      | *           | 0.01  | %        | 0.03    | 0.16        |
| Sulphur as S, Total              | DETSC 2320  | 0.01  | %        | 0.02    | 0.20        |
| Sulphate as SO4, Total           | DETSC 2321# | 0.01  | %        | 0.03    | 0.43        |
| Sulphate as SO4, Total           | DETSC 2321# | 100   | mg/kg    | 310     | 4300        |



Inappropriate

# Information in Support of the Analytical Results

Our Ref 20-19523 Client Ref N9366-20 Contract Irish Rail- Cork Line

#### **Containers Received & Deviating Samples**

|         |                                      | Date    |                            |                                 | container for |
|---------|--------------------------------------|---------|----------------------------|---------------------------------|---------------|
| Lab No  | Sample ID                            | Sampled | <b>Containers Received</b> | Holding time exceeded for tests | tests         |
| 1738512 | XC219-CPRC02 3.90-4.00               |         | PG                         | Sample date not supplied        |               |
| 4700540 | CONCRETE                             |         | 20                         |                                 |               |
| 1/38513 | XC219-CPRC02 11.85-12.40<br>CONCRETE |         | PG                         | Sample date not supplied        |               |
| 1738514 | XC219-CPRC02 14.62-14.78             |         | PG                         | Sample date not supplied        |               |
| 1738515 | XC219-CPRC03 6.75-6.90               |         | PG                         | Sample date not supplied        |               |
| 1738516 | XC219-CPRC03 8.00-8.13               |         | PG                         | Sample date not supplied        |               |
| 1738517 | XC219-CPR203 9.25-9.30               |         | PG                         | Sample date not supplied        |               |
| 1738518 | XC219-CPRC04 3.70-3.88               |         | PG                         | Sample date not supplied        |               |
| 1738519 | XC219-CPRC04 6.70-7.02               |         | PG                         | Sample date not supplied        |               |
| 1738520 | XC219-CPR204 2.70-2.80               |         | PG                         | Sample date not supplied        |               |
| 1738521 | XC219-CPRC05 3.00-3.20               |         | PG                         | Sample date not supplied        |               |
| 1738522 | XC219-CPRC05 5.10-5.50               |         | PG                         | Sample date not supplied        |               |
| 1738523 | XC219-CPRC05 8.75<br>CONCRETE        |         | PG                         | Sample date not supplied        |               |
| 1738524 | XC219-CPRC05 11.30-11.40<br>CONCRETE |         | PG                         | Sample date not supplied        |               |

Key: P-Plastic G-Bag

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

#### **Soil Analysis Notes**

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

#### Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Appendix J Environmental Laboratory Test Results



Environmental Chemistry SOCOTEC UK Ashby Rd, Bretby, Burton-on-Trent, UK DE15 0YZ

# **Certificate of Analysis**

Project No: 20071478 Client: OCB Geotechnical Limited

Quote Number: BEC200710078 Project Reference: Irish Rail - Cork Line Site Name: 19-135

Contact: Ian Holley

Address: Unit 1 Carrigogna Midleton County Cork

Post Code: Ireland

E-Mail: iholley@ocbgeotechnical.com

Phone No: 021 4638474

Number of Samples Received: 2

Date Received: 30/07/2020

Analysis Date: 11/08/2020

Date Issued: 11/08/2020

Job Status: Complete

Report Type: Final Version 01

This report supersedes any versions previously issued by the laboratory

Alee1-

Authorised by the Operations Manager Becky Batham

Account Manager Martin Elliott-Palmer



Client: OCB Geotechnical Limited

Project Name: 19-135 Project No: 20071478 Date Issued: 11/08/2020

#### Samples Analysed

Sample Reference

Text ID

Sample Date

Sample Type

XC219-TP01-4-ES-0.50-0.50

20071478-007

03/07/2020 17:00:00

SOLID



Analysis Results

Client: OCB Geotechnical Limited

Project Name: 19-135

Project No: 20071478 Date Issued: 11/08/2020

|                      |                       |         |       | Project ID  | 00074476        |                |
|----------------------|-----------------------|---------|-------|-------------|-----------------|----------------|
|                      |                       |         |       | 0           | <br>200/14/8    | 07             |
|                      |                       |         |       | Sample ID   | 0               |                |
|                      |                       |         |       | Customer ID | <br>XC219-TP01- | 4-ES-0.50-0.50 |
|                      |                       |         | :     | Sample Type | LPL             | SOLID          |
|                      |                       |         | Sa    | mpling Date | <br>03/07/2020  | 03/07/2020     |
|                      |                       |         |       |             |                 |                |
| Analysis             | Method Code           | MDL     | Units | Accred      |                 |                |
| >C6-C8 Aliphatic     | GROHSA/BTEXHSA        | 0.1     | mg/l  | N           | <0.100          |                |
| >C7-C8 Aromatic      | GROHSA/BTEXHSA        | 0.005   | mg/l  | N           | <0.005          |                |
| >C8-C10 Aliphatic    | GROHSA/BTEXHSA        | 0.1     | mg/l  | N           | <0.100          |                |
| >C8-C10 Aromatic     | GROHSA/BTEXHSA        | 0.02    | mg/l  | N           | <0.020          |                |
| C5-C6 Aliphatic      | GROHSA/BTEXHSA        | 0.1     | mg/l  | N           | <0.100          |                |
| C5-C7 Aromatic       | GROHSA/BTEXHSA        | 0.005   | mg/l  | N           | < 0.005         |                |
| Total GRO            | GROHSA/BTEXHSA        | 0.1     | mg/l  | U           | <0.100          |                |
| Free Cyanide         | SFAPI                 | 0.02    | mg/l  | U           | < 0.02          |                |
| Arsenic as As        | ICPMSW (Dissolved)    | 0.001   | mg/l  | U           | < 0.001         |                |
| Cadmium as Cd        | ICPMSW (Dissolved)    | 0.00002 | mg/l  | U           | < 0.00002       |                |
| Total Chromium as Cr | ICPMSW (Dissolved)    | 0.001   | mg/l  | U           | <0.001          |                |
| Copper as Cu         | ICPMSW (Dissolved)    | 0.001   | mg/l  | U           | <0.001          |                |
| Lead as Pb           | ICPMSW (Dissolved)    | 0.001   | mg/l  | U           | <0.001          |                |
| Mercury as Hg        | ICPMSW (Dissolved)    | 0.00003 | mg/l  | U           | < 0.00003       |                |
| Nickel as Ni         | ICPMSW (Dissolved)    | 0.001   | mg/l  | U           | <0.001          |                |
| Selenium as Se       | ICPMSW (Dissolved)    | 0.001   | mg/l  | U           | <0.001          |                |
| Vanadium as V        | ICPMSW (Dissolved)    | 0.001   | mg/l  | U           | <0.001          |                |
| Zinc as Zn           | ICPMSW (Dissolved)    | 0.002   | mg/l  | U           | 0.003           |                |
| Barium as Ba         | ICPWATVAR (Dissolved) | 0.01    | mg/l  | U           | <0.01           |                |
| Beryllium as Be      | ICPWATVAR (Dissolved) | 0.01    | mg/l  | N           | <0.01           |                |
| Boron as B           | ICPWATVAR (Dissolved) | 0.01    | mg/l  | U           | <0.01           |                |
| Benzene              | BTEXHSA               | 5       | µg/l  | N           | <5              |                |
| Ethylbenzene         | BTEXHSA               | 5       | μg/l  | N           | <5              |                |
| m/p-Xylene           | BTEXHSA               | 10      | µg/l  | N           | <10             |                |
| o-Xylene             | BTEXHSA               | 5       | μg/l  | N           | <5              |                |
|                      | 1                     | 1       | -     |             | -               | 1              |





Analysis Results

Client: OCB Geotechnical Limited

Project Name: 19-135

Project No: 20071478 Date Issued: 11/08/2020

|                        |                    |      |       | Project ID   | 2007147   | '8                    |
|------------------------|--------------------|------|-------|--------------|-----------|-----------------------|
|                        |                    |      |       | Sample ID    |           | 007                   |
|                        |                    |      |       | Customer ID  | XC21      | 9-TP01-4-ES-0.50-0.50 |
|                        |                    |      |       | Sample Type  | LPL       | SOLID                 |
|                        |                    |      | s     | ampling Date | 03/07/202 | 0 03/07/2020          |
|                        |                    |      |       |              |           |                       |
| Analysis               | Method Code        | MDL  | Units | Accred       |           |                       |
| Toluene                | BTEXHSA            | 5    | µg/l  | N            | <5        |                       |
| Acenaphthene           | PAHMSW             | 0.01 | µg/l  | U            | <0.02     |                       |
| Acenaphthylene         | PAHMSW             | 0.01 | µg/l  | U            | <0.02     |                       |
| Anthracene             | PAHMSW             | 0.01 | µg/l  | U            | <0.02     |                       |
| Benzo[a]anthracene     | PAHMSW             | 0.01 | µg/l  | U            | <0.02     |                       |
| Benzo[a]pyrene         | PAHMSW             | 0.01 | µg/l  | U            | <0.02     |                       |
| Benzo[b]fluoranthene   | PAHMSW             | 0.01 | µg/l  | U            | <0.02     |                       |
| Benzo[g,h,i]perylene   | PAHMSW             | 0.01 | µg/l  | U            | <0.02     |                       |
| Benzo[k]fluoranthene   | PAHMSW             | 0.01 | µg/l  | U            | <0.02     |                       |
| Chrysene               | PAHMSW             | 0.01 | µg/l  | U            | <0.02     |                       |
| Dibenzo[a,h]anthracene | PAHMSW             | 0.01 | µg/l  | U            | <0.02     |                       |
| Fluoranthene           | PAHMSW             | 0.01 | µg/l  | U            | <0.02     |                       |
| Fluorene               | PAHMSW             | 0.01 | µg/l  | U            | <0.02     |                       |
| Indeno[1,2,3-cd]pyrene | PAHMSW             | 0.01 | µg/l  | U            | <0.02*    |                       |
| Naphthalene            | PAHMSW             | 0.01 | µg/l  | U            | 0.22      |                       |
| Phenanthrene           | PAHMSW             | 0.01 | µg/l  | U            | <0.02     |                       |
| Pyrene                 | PAHMSW             | 0.01 | µg/l  | U            | <0.02     |                       |
| Total PAH 16           | PAHMSW             | 0.16 | µg/l  | U            | <0.47     |                       |
| >C10-C12 (Aliphatic)   | TPHFID (Aliphatic) | 0.01 | mg/l  | U            | 0.14      |                       |
| >C12-C16 (Aliphatic)   | TPHFID (Aliphatic) | 0.01 | mg/l  | U            | <0.02     |                       |
| >C16-C21 (Aliphatic)   | TPHFID (Aliphatic) | 0.01 | mg/l  | U            | 0.05      |                       |
| >C21-C35 (Aliphatic)   | TPHFID (Aliphatic) | 0.01 | mg/l  | U            | 0.05      |                       |
| >C35-C44 (Aliphatic)   | TPHFID (Aliphatic) | 0.01 | mg/l  | N            | <0.02     |                       |
| Total TPH (Aliphatic)  | TPHFID (Aliphatic) | 0.01 | mg/l  | U            | <0.02     |                       |
| >C10-C12 (Aromatic)    | TPHFID (Aromatic)  | 0.01 | mg/l  | U            | <0.02     |                       |
|                        |                    | 1    |       |              |           |                       |





Analysis Results

Client: OCB Geotechnical Limited

Project Name: 19-135

Project No: 20071478 Date Issued: 11/08/2020

|                                        |                               |      |       | Project ID   | 20071478   |                   |
|----------------------------------------|-------------------------------|------|-------|--------------|------------|-------------------|
|                                        |                               |      |       | Sample ID    | 20071470   | 007               |
|                                        |                               |      |       | Customer ID  | XC219-TF   | 01-4-ES-0.50-0.50 |
|                                        |                               |      |       | Sample Type  | LPL        | SOLID             |
|                                        |                               |      | s     | ampling Date | 03/07/2020 | 03/07/2020        |
|                                        |                               |      |       |              |            |                   |
| Analysis                               | Method Code                   | MDL  | Units | Accred       |            |                   |
| >C12-C16 (Aromatic)                    | TPHFID (Aromatic)             | 0.01 | mg/l  | U            | < 0.02     |                   |
| >C16-C21 (Aromatic)                    | TPHFID (Aromatic)             | 0.01 | mg/l  | U            | <0.02      |                   |
| >C21-C35 (Aromatic)                    | TPHFID (Aromatic)             | 0.01 | mg/l  | U            | 0.05       |                   |
| >C35-C44 (Aromatic)                    | TPHFID (Aromatic)             | 0.01 | mg/l  | N            | <0.02      |                   |
| Total TPH (Aromatic)                   | TPHFID (Aromatic)             | 0.01 | mg/l  | U            | 0.08       |                   |
| Benzene                                | VOCHSAW                       | 1    | µg/l  | N            | <1         |                   |
| Ethylbenzene                           | VOCHSAW                       | 1    | µg/l  | N            | <1         |                   |
| m and p-Xylene                         | VOCHSAW                       | 1    | µg/l  | N            | <1         |                   |
| МТВЕ                                   | VOCHSAW                       | 1    | µg/l  | N            | <1         |                   |
| o-Xylene                               | VOCHSAW                       | 1    | µg/l  | N            | <1         |                   |
| Toluene                                | VOCHSAW                       | 1    | µg/l  | N            | <1         |                   |
| Equivalent Weight of Dry Material (kg) | Leachate Preparation CEN 10:1 |      | kg    | N            |            | 0.090             |
| Fraction above 4mm (%)                 | Leachate Preparation CEN 10:1 |      | %     | N            |            | 0                 |
| Fraction of non-crushable material (%) | Leachate Preparation CEN 10:1 |      | %     | N            |            | 0                 |
| Volume of Water for 10:1 Leach (ltr)   | Leachate Preparation CEN 10:1 |      | I     | N            |            | 0.865             |
| Weight of Sample Leached (kg)          | Leachate Preparation CEN 10:1 |      | kg    | N            |            | 0.125             |



# **Additional Report Notes**

| Method<br>Code | Sample ID           | The following information should be taken into consideration when using the data contained within this report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TPHFID-SI      | 001,003,005<br>007  | Due to a limited amount of sample, a lower volume was used to complete the analysis.<br>This resulted in a raised detection limit for these samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PAHMSW         | 001,003,005<br>,007 | The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Indeno[1,2,3-cd[pyrene) . These circumstances should be taken into consideration when utilising the data. |
| PAHMSW         | 001,003,005<br>,007 | Due to a limited amount of sample, a lower volume was used to complete the analysis.<br>This resulted in a raised detection limit for these samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

LIMS-F002 - Report Notes

|                            |         | Client: OCB Geotechnical Limited |                     |                 |           |                           |                  |              |               |
|----------------------------|---------|----------------------------------|---------------------|-----------------|-----------|---------------------------|------------------|--------------|---------------|
|                            |         | Project Name: 19-135             |                     |                 |           |                           |                  |              |               |
| SOCOTEC                    |         | Project No: 20071478             |                     |                 |           |                           |                  |              |               |
| SOCOTEC                    |         | Date Issued: 11/08/2             | 2020                |                 |           |                           |                  |              |               |
| Deviating Sample Report    | Text ID | Reported Name                    | Incorrect Container | Incorrect Label | Headspace | Incorrect/No Preservative | No Sampling Date | Holding Time | Handling Time |
| Analysis Method            |         |                                  |                     |                 | 1         |                           | I                | I            |               |
| Analysis                   |         | Analysis Type                    | Analy               | sis Met         | hod       |                           |                  |              |               |
| BTEXHSA                    |         | ORGANIC                          | UNFI                | UNFILTERED      |           |                           |                  |              |               |
| GROHSA                     |         | ORGANIC                          | UNFI                | UNFILTERED      |           |                           |                  |              |               |
| ICPMSW (Dissolved)         |         | METALS                           | FILTE               | FILTERED        |           |                           |                  |              |               |
| ICPWATVAR (Dissolved)      |         | METALS                           | FILTE               | FILTERED        |           |                           |                  |              |               |
| Leachate Preparation CEN 1 | 10:1    | PHYS                             | As Re               | As Received     |           |                           |                  |              |               |
| PAHMSW                     |         | ORGANIC                          | FILTE               | FILTERED        |           |                           |                  |              |               |
| SFAPI                      |         | INORGANIC                        | FILTE               | FILTERED        |           |                           |                  |              |               |
| TPHFID (Aliphatic)         |         | ORGANIC                          | FILTE               | RED             |           |                           |                  |              |               |
| TPHFID (Aromatic)          |         | ORGANIC                          | FILTE               | RED             |           |                           |                  |              |               |

ORGANIC

UNFILTERED

VOCHSAW



Date Issued: 11/08/2020

### **Additional Information**

This report refers to samples as received, and SOCOTEC Uk Ltd takes no responsibility for accuracy or competence of sampling by others.

Results within this report relate only to the samples tested.

In the accreditation column of analysis report the codes are as follows:

- U = UKAS accredited analysis
- M = MCERT accredited analysis
- N = Unaccredited analysis

Any units marked with ^ signify results are reported on a dry weight basis of 105° c

All Air Dried and Ground Samples (ADG) are oven dried at less than 35° c.

This report shall not be reproduced except in full and with approval from the laboratory.

Opinions and interpretations given are outside the scope of our UKAS accreditation.

Any samples marked with \* are not covered by our scope of UKAS accreditation, if applicable further report notes have been added.

Any solid samples where the Major Constituents are not one of the following (Sand, Silt, Clay, Made Ground) are not one of our accredited matrix types.

Any samples marked with ‡ have had MCERTS accreditation removed for this result

Any samples marked with a tick in the deviant table is deviant for the specific reason.

Any samples reported as IS, NA, ND mean the following:

- IS = Insufficient Sample to complete analysis
- NA = Sample is not amenable for the required analysis
- ND = Results cannot be determined

Our deviating sample report does not include deviancy information for Subcontracted analysis. Please see the report from the Subcontracted lab for information regarding any deviancies for this analysis.

### End of Certificate of Analysis



Chemistry to deliver results Chemtest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

| Report No.:              | 20-07190-1                                                                     |                  |             |  |  |  |  |
|--------------------------|--------------------------------------------------------------------------------|------------------|-------------|--|--|--|--|
| Initial Date of Issue:   | 11-Mar-2020                                                                    |                  |             |  |  |  |  |
| Client                   | Environmental Laboratory Services Ltd                                          |                  |             |  |  |  |  |
| Client Address:          | Acorn Business Campus<br>Mahon Industrial Park<br>Blackrock<br>Cork<br>Ireland |                  |             |  |  |  |  |
| Contact(s):              | Emer Kearney<br>Results                                                        |                  |             |  |  |  |  |
| Project                  | Soil Testing                                                                   |                  |             |  |  |  |  |
| Quotation No.:           | Q20-19728                                                                      | Date Received:   | 05-Mar-2020 |  |  |  |  |
| Order No.:               | 6881                                                                           | Date Instructed: | 05-Mar-2020 |  |  |  |  |
| No. of Samples:          | 2                                                                              |                  |             |  |  |  |  |
| Turnaround (Wkdays):     | 5                                                                              | Results Due:     | 11-Mar-2020 |  |  |  |  |
| Date Approved:           | 11-Mar-2020                                                                    |                  |             |  |  |  |  |
| Approved By:<br>Details: | Darrell Hall, Director                                                         |                  |             |  |  |  |  |
|                          | ,,,,                                                                           |                  |             |  |  |  |  |


**Results - Leachate** 

| Client: Environmental Laboratory |                  |      | Cho    | mtast l  | ah Na i  | 20.07100    | 20.07100    |  |
|----------------------------------|------------------|------|--------|----------|----------|-------------|-------------|--|
| Services Ltd                     | Chemiest Job No. |      |        |          |          | 20-07 190   | 20-07 190   |  |
| Quotation No.: Q20-19728         |                  | (    | Chemte | st Sam   | ple ID.: | 981247      | 981248      |  |
| Order No.: 6881                  |                  |      | Clier  | nt Samp  | le Ref.: | 176306/001  | 176306/002  |  |
|                                  |                  |      | Clie   | ent Sam  | ple ID.: | 1.0m        | 0.05m       |  |
|                                  |                  |      | Sa     | ample Lo | ocation: | TP02        | TP02        |  |
|                                  |                  |      |        | Sampl    | e Type:  | SOIL        | SOIL        |  |
|                                  |                  |      |        | Date Sa  | ampled:  | 17-Feb-2020 | 17-Feb-2020 |  |
| Determinand                      | Accred.          | SOP  | Туре   | Units    | LOD      |             |             |  |
| рН                               | U                | 1010 | 10:1   |          | N/A      | 8.7         | 8.1         |  |
| Cyanide (Free)                   | U                | 1300 | 10:1   | mg/l     | 0.050    | < 0.050     | < 0.050     |  |
| Arsenic (Dissolved)              | U                | 1450 | 10:1   | µg/l     | 1.0      | < 1.0       | < 1.0       |  |
| Boron (Dissolved)                | U                | 1450 | 10:1   | µg/l     | 20       | < 20        | < 20        |  |
| Barium (Dissolved)               | U                | 1450 | 10:1   | µg/l     | 5.0      | < 5.0       | < 5.0       |  |
| Beryllium (Dissolved)            | U                | 1450 | 10:1   | µg/l     | 1.0      | < 1.0       | < 1.0       |  |
| Cadmium (Dissolved)              | U                | 1450 | 10:1   | µg/l     | 0.080    | < 0.080     | < 0.080     |  |
| Chromium (Dissolved)             | U                | 1450 | 10:1   | µg/l     | 1.0      | < 1.0       | < 1.0       |  |
| Copper (Dissolved)               | U                | 1450 | 10:1   | µg/l     | 1.0      | 1.1         | 1.9         |  |
| Mercury (Dissolved)              | U                | 1450 | 10:1   | µg/l     | 0.50     | < 0.50      | < 0.50      |  |
| Nickel (Dissolved)               | U                | 1450 | 10:1   | µg/l     | 1.0      | < 1.0       | < 1.0       |  |
| Lead (Dissolved)                 | U                | 1450 | 10:1   | µg/l     | 1.0      | < 1.0       | < 1.0       |  |
| Selenium (Dissolved)             | U                | 1450 | 10:1   | µg/l     | 1.0      | < 1.0       | < 1.0       |  |
| Vanadium (Dissolved)             | U                | 1450 | 10:1   | µg/l     | 1.0      | < 1.0       | < 1.0       |  |
| Zinc (Dissolved)                 | U                | 1450 | 10:1   | µg/l     | 1.0      | 2.2         | < 1.0       |  |
| Aliphatic TPH >C5-C6             | N                | 1675 | 10:1   | µg/l     | 0.10     | [B] < 0.10  | [B] < 0.10  |  |
| Aliphatic TPH >C6-C8             | N                | 1675 | 10:1   | µg/l     | 0.10     | [B] < 0.10  | [B] < 0.10  |  |
| Aliphatic TPH >C8-C10            | N                | 1675 | 10:1   | µg/l     | 0.10     | [B] < 0.10  | [B] < 0.10  |  |
| Aliphatic TPH >C10-C12           | N                | 1675 | 10:1   | µg/l     | 0.10     | [B] < 0.10  | [B] < 0.10  |  |
| Aliphatic TPH >C12-C16           | N                | 1675 | 10:1   | µg/l     | 0.10     | [B] < 0.10  | [B] < 0.10  |  |
| Aliphatic TPH >C16-C21           | N                | 1675 | 10:1   | µg/l     | 0.10     | [B] < 0.10  | [B] < 0.10  |  |
| Aliphatic TPH >C21-C35           | N                | 1675 | 10:1   | µg/l     | 0.10     | [B] < 0.10  | [B] < 0.10  |  |
| Aliphatic TPH >C35-C44           | N                | 1675 | 10:1   | µg/l     | 0.10     | [B] < 0.10  | [B] < 0.10  |  |
| Total Aliphatic Hydrocarbons     | N                | 1675 | 10:1   | µg/l     | 5.0      | [B] < 5.0   | [B] < 5.0   |  |
| Aromatic TPH >C5-C7              | N                | 1675 | 10:1   | µg/l     | 0.10     | [B] < 0.10  | [B] < 0.10  |  |
| Aromatic TPH >C7-C8              | N                | 1675 | 10:1   | µg/l     | 0.10     | [B] < 0.10  | [B] < 0.10  |  |
| Aromatic TPH >C8-C10             | N                | 1675 | 10:1   | µg/l     | 0.10     | [B] < 0.10  | [B] < 0.10  |  |
| Aromatic TPH >C10-C12            | N                | 1675 | 10:1   | µg/l     | 0.10     | [B] < 0.10  | [B] < 0.10  |  |
| Aromatic TPH >C12-C16            | Ν                | 1675 | 10:1   | µg/l     | 0.10     | [B] < 0.10  | [B] < 0.10  |  |
| Aromatic TPH >C16-C21            | N                | 1675 | 10:1   | µg/l     | 0.10     | [B] < 0.10  | [B] < 0.10  |  |
| Aromatic TPH >C21-C35            | N                | 1675 | 10:1   | µg/l     | 0.10     | [B] < 0.10  | [B] < 0.10  |  |
| Aromatic TPH >C35-C44            | N                | 1680 | 10:1   | µg/l     | 50.00    | [B] < 50    | [B] < 50    |  |
| Total Aromatic Hydrocarbons      | N                | 1675 | 10:1   | µg/l     | 5.0      | [B] < 5.0   | [B] < 5.0   |  |
| Total Petroleum Hydrocarbons     | N                | 1675 | 10:1   | µg/l     | 10       | [B] < 10    | [B] < 10    |  |
| Benzene                          | U                | 1760 | 10:1   | µg/l     | 1.0      | [B] < 1.0   | [B] < 1.0   |  |
| Toluene                          | U                | 1760 | 10:1   | µg/l     | 1.0      | [B] < 1.0   | [B] < 1.0   |  |
| Ethylbenzene                     | U                | 1760 | 10:1   | µg/l     | 1.0      | [B] < 1.0   | [B] < 1.0   |  |
| m & p-Xvlene                     | U                | 1760 | 10.1   | ug/l     | 10       | [B] < 1.0   | [B] < 1.0   |  |



**Results - Leachate** 

| Client: Environmental Laboratory |         |      | Cher   | ntest Jo  | ob No.:  | 20-07190     | 20-07190     |   |
|----------------------------------|---------|------|--------|-----------|----------|--------------|--------------|---|
|                                  |         |      | Chemte | st Sam    | nla ID · | 081247       | 0812/18      |   |
| Order No : 6881                  |         |      | Clior  | at Samn   | lo Rof   | 176306/001   | 176306/002   |   |
|                                  |         |      | Clie   | nt Sam    | nle ID · | 1 0m         | 0.05m        |   |
|                                  |         |      | Sa     | mnle I c  | cation:  |              |              |   |
|                                  |         |      | 08     | Sample LC |          | 1F02<br>SOIL | 1F02<br>SOIL |   |
|                                  |         |      |        | Date Sa   | mpled:   | 17-Feb-2020  | 17-Feb-2020  |   |
| Determinand                      | Accred. | SOP  | Туре   | Units     | LOD      |              |              |   |
| o-Xylene                         | U       | 1760 | 10:1   | µg/l      | 1.0      | [B] < 1.0    | [B] < 1.0    |   |
| Methyl Tert-Butyl Ether          | Ν       | 1760 | 10:1   | µg/l      | 1.0      | [B] < 1.0    | [B] < 1.0    |   |
| Naphthalene                      | U       | 1800 | 10:1   | µg/l      | 0.10     | < 0.10       | < 0.10       |   |
| Acenaphthylene                   | U       | 1800 | 10:1   | µg/l      | 0.10     | < 0.10       | < 0.10       |   |
| Acenaphthene                     | U       | 1800 | 10:1   | µg/l      | 0.10     | < 0.10       | < 0.10       |   |
| Fluorene                         | U       | 1800 | 10:1   | µg/l      | 0.10     | < 0.10       | < 0.10       |   |
| Phenanthrene                     | U       | 1800 | 10:1   | µg/l      | 0.10     | < 0.10       | < 0.10       |   |
| Anthracene                       | U       | 1800 | 10:1   | µg/l      | 0.10     | < 0.10       | < 0.10       |   |
| Fluoranthene                     | U       | 1800 | 10:1   | µg/l      | 0.10     | < 0.10       | < 0.10       |   |
| Pyrene                           | U       | 1800 | 10:1   | µg/l      | 0.10     | < 0.10       | < 0.10       |   |
| Benzo[a]anthracene               | U       | 1800 | 10:1   | µg/l      | 0.10     | < 0.10       | < 0.10       |   |
| Chrysene                         | U       | 1800 | 10:1   | µg/l      | 0.10     | < 0.10       | < 0.10       |   |
| Benzo[b]fluoranthene             | U       | 1800 | 10:1   | µg/l      | 0.10     | < 0.10       | < 0.10       |   |
| Benzo[k]fluoranthene             | U       | 1800 | 10:1   | µg/l      | 0.10     | < 0.10       | < 0.10       |   |
| Benzo[a]pyrene                   | U       | 1800 | 10:1   | µg/l      | 0.10     | < 0.10       | < 0.10       |   |
| Indeno(1,2,3-c,d)Pyrene          | U       | 1800 | 10:1   | µg/l      | 0.10     | < 0.10       | < 0.10       |   |
| Dibenz(a,h)Anthracene            | U       | 1800 | 10:1   | µg/l      | 0.10     | < 0.10       | < 0.10       |   |
| Benzo[g,h,i]perylene             | U       | 1800 | 10:1   | µg/l      | 0.10     | < 0.10       | < 0.10       | 1 |
| Total Of 16 PAH's                | U       | 1800 | 10:1   | µg/l      | 2.0      | < 2.0        | < 2.0        |   |



## **Deviations**

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

| Sample: | Sample Ref: | Sample ID: | Sample<br>Location: | Sampled<br>Date: | Deviation Code(s): | Containers<br>Received: |
|---------|-------------|------------|---------------------|------------------|--------------------|-------------------------|
| 981247  | 176306/001  | 1          | TP02                | 17-Feb-2020      | В                  | Amber Glass<br>250ml    |
| 981247  | 176306/001  | 1          | TP02                | 17-Feb-2020      | В                  | Plastic Tub<br>500g     |
| 981248  | 176306/002  | 2          | TP02                | 17-Feb-2020      | В                  | Amber Glass<br>250ml    |
| 981248  | 176306/002  | 2          | TP02                | 17-Feb-2020      | В                  | Plastic Tub<br>500g     |



# **Test Methods**

| SOP  | Title                                                                                   | Parameters included                                                                                                                                                                                                                                                            | Method summary                                                                                                                               |
|------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1010 | pH Value of Waters                                                                      | рН                                                                                                                                                                                                                                                                             | pH Meter                                                                                                                                     |
| 1300 | Cyanides & Thiocyanate in<br>Waters                                                     | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                                             | Continuous Flow Analysis.                                                                                                                    |
| 1450 | Metals in Waters by ICP-MS                                                              | Metals, including: Antimony; Arsenic; Barium;<br>Beryllium; Boron; Cadmium; Chromium; Cobalt;<br>Copper; Lead; Manganese; Mercury;<br>Molybdenum; Nickel; Selenium; Tin; Vanadium;<br>Zinc                                                                                     | Filtration of samples followed by direct<br>determination by inductively coupled plasma<br>mass spectrometry (ICP-MS).                       |
| 1675 | TPH Aliphatic/Aromatic split in<br>Waters by GC-FID(cf. Texas<br>Method 1006 / TPH CWG) | Aliphatics: >C5–C6, >C6–C8, >C8– C10,<br>>C10–C12, >C12–C16, >C16–C21, >C21–<br>C35, >C35– C44Aromatics: >C5–C7, >C7–C8,<br>>C8– C10, >C10–C12, >C12–C16, >C16– C21,<br>>C21– C35, >C35– C44                                                                                   | Pentane extraction / GCxGC FID detection                                                                                                     |
| 1680 | Extractable Petroleum<br>Hydrocarbons                                                   | Aliphatics: >C5–C6, >C6–C8, >C8– C10*,<br>>C10–C12*, >C12–C16*, >C16–C21*, >C21–<br>C35*, >C35– C44Aromatics: >C5–C7, >C7–C8,<br>>C8– C10*, >C10–C12*, >C12–C16*, >C16–<br>C21*, >C21– C35*, >C35– C44                                                                         | Dichloromethane extraction / GCxGC FID<br>detection                                                                                          |
| 1760 | Volatile Organic Compounds<br>(VOCs) in Waters by<br>Headspace GC-MS                    | Volatile organic compounds, including BTEX<br>and halogenated Aliphatic/Aromatics. (cf.<br>USEPA Method 8260)                                                                                                                                                                  | Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds. |
| 1800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Waters by GC-MS              | Acenaphthene; Acenaphthylene; Anthracene;<br>Benzo[a]Anthracene; Benzo[a]Pyrene;<br>Benzo[b]Fluoranthene; Benzo[ghi]Perylene;<br>Benzo[k]Fluoranthene; Chrysene;<br>Dibenz[ah]Anthracene; Fluoranthene; Fluorene;<br>Indeno[123cd]Pyrene; Naphthalene;<br>Phenanthrene; Pyrene | Pentane extraction / GCMS detection                                                                                                          |
| 2030 | Moisture and Stone Content of<br>Soils(Requirement of<br>MCERTS)                        | Moisture content                                                                                                                                                                                                                                                               | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                         |
| 640  | Characterisation of Waste<br>(Leaching C10)                                             | Waste material including soil, sludges and granular waste                                                                                                                                                                                                                      | ComplianceTest for Leaching of Granular<br>Waste Material and Sludge                                                                         |

The right chemistry to deliver results

### **Report Information**

### Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

### Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to:

customerservices@chemtest.com



Chemistry to deliver results Chemtest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

| Report No.:              | 20-07165-1                                                                     |                  |             |
|--------------------------|--------------------------------------------------------------------------------|------------------|-------------|
| Initial Date of Issue:   | 12-Mar-2020                                                                    |                  |             |
| Client                   | Environmental Laboratory Services Ltd                                          |                  |             |
| Client Address:          | Acorn Business Campus<br>Mahon Industrial Park<br>Blackrock<br>Cork<br>Ireland |                  |             |
| Contact(s):              | Emer Kearney<br>Results                                                        |                  |             |
| Project                  | Soil Samples                                                                   |                  |             |
| Quotation No.:           | Q20-19728                                                                      | Date Received:   | 05-Mar-2020 |
| Order No.:               | 6897                                                                           | Date Instructed: | 05-Mar-2020 |
| No. of Samples:          | 4                                                                              |                  |             |
| Turnaround (Wkdays):     | 5                                                                              | Results Due:     | 11-Mar-2020 |
| Date Approved:           | 12-Mar-2020                                                                    |                  |             |
| Approved By:<br>Details: | Darrell Hall, Director                                                         |                  |             |
| -                        | , =                                                                            |                  |             |



# **Results - Leachate**

| Client: Environmental Laboratory |         |      | Che    | mtest J   | ob No.:   | 20-07165     | 20-07165     |  | 20-07165    | 20-07165    |
|----------------------------------|---------|------|--------|-----------|-----------|--------------|--------------|--|-------------|-------------|
| Quotation No : O20 10728         |         |      | Chomte | et Sam    | nle ID ·  | 081120       | 081121       |  | 081124      | 081125      |
| Order No : 6897                  |         |      | Clie   | nt Samr   |           | 176540/001   | 176540/002   |  | 176540/005  | 176540/006  |
|                                  |         |      | Cli    | ent Sam   | nole ID : | 1/0340/001   | 2            |  | 5           | 6           |
|                                  |         |      | S      | ample I ( | ocation:  | XC219-CPRC04 | XC219-CPRC04 |  | XC219-CP01  | XC219-CP01  |
|                                  |         |      | 0.     | Sample    | e Type:   | SOIL         | SOIL         |  | SOIL        | SOIL        |
|                                  |         |      |        | Top De    | oth (m)   | 0.05         | 1 00         |  | 0.05        | 1 00        |
|                                  |         |      |        | Date Sa   | ampled:   | 20-Feb-2020  | 20-Feb-2020  |  | 27-Feb-2020 | 28-Feb-2020 |
| Determinand                      | Accred. | SOP  | Type   | Units     | LOD       |              |              |  |             |             |
| <u>–</u> рН                      | U       | 1010 | 10:1   |           | N/A       | 8.9          | 8.8          |  | 8.9         | 8.8         |
| ,<br>Cyanide (Free)              | U       | 1300 | 10:1   | mg/l      | 0.050     | < 0.050      | < 0.050      |  | < 0.050     | < 0.050     |
| Arsenic (Dissolved)              | U       | 1450 | 10:1   | µq/l      | 1.0       | 1.0          | < 1.0        |  | < 1.0       | < 1.0       |
| Boron (Dissolved)                | U       | 1450 | 10:1   | µg/l      | 20        | < 20         | < 20         |  | < 20        | < 20        |
| Barium (Dissolved)               | U       | 1450 | 10:1   | µg/l      | 5.0       | < 5.0        | < 5.0        |  | 7.3         | < 5.0       |
| Beryllium (Dissolved)            | U       | 1450 | 10:1   | µg/l      | 1.0       | < 1.0        | < 1.0        |  | < 1.0       | < 1.0       |
| Cadmium (Dissolved)              | U       | 1450 | 10:1   | µg/l      | 0.080     | < 0.080      | < 0.080      |  | < 0.080     | < 0.080     |
| Chromium (Dissolved)             | U       | 1450 | 10:1   | µg/l      | 1.0       | < 1.0        | < 1.0        |  | < 1.0       | < 1.0       |
| Copper (Dissolved)               | U       | 1450 | 10:1   | µg/l      | 1.0       | 1.0          | < 1.0        |  | 1.2         | 1.2         |
| Mercury (Dissolved)              | U       | 1450 | 10:1   | µg/l      | 0.50      | < 0.50       | < 0.50       |  | 0.66        | < 0.50      |
| Nickel (Dissolved)               | U       | 1450 | 10:1   | µg/l      | 1.0       | < 1.0        | < 1.0        |  | < 1.0       | < 1.0       |
| Lead (Dissolved)                 | U       | 1450 | 10:1   | µg/l      | 1.0       | 1.0          | < 1.0        |  | < 1.0       | < 1.0       |
| Selenium (Dissolved)             | U       | 1450 | 10:1   | µg/l      | 1.0       | < 1.0        | < 1.0        |  | 2.1         | 1.4         |
| Vanadium (Dissolved)             | U       | 1450 | 10:1   | µg/l      | 1.0       | < 1.0        | < 1.0        |  | < 1.0       | < 1.0       |
| Zinc (Dissolved)                 | U       | 1450 | 10:1   | µg/l      | 1.0       | 1.1          | < 1.0        |  | < 1.0       | < 1.0       |
| Aliphatic TPH >C5-C6             | N       | 1675 | 10:1   | µg/l      | 0.10      | < 0.10       | < 0.10       |  | < 0.10      | < 0.10      |
| Aliphatic TPH >C6-C8             | N       | 1675 | 10:1   | µg/l      | 0.10      | < 0.10       | < 0.10       |  | < 0.10      | < 0.10      |
| Aliphatic TPH >C8-C10            | N       | 1675 | 10:1   | µg/l      | 0.10      | < 0.10       | < 0.10       |  | < 0.10      | < 0.10      |
| Aliphatic TPH >C10-C12           | N       | 1675 | 10:1   | µg/l      | 0.10      | < 0.10       | < 0.10       |  | < 0.10      | < 0.10      |
| Aliphatic TPH >C12-C16           | N       | 1675 | 10:1   | µg/l      | 0.10      | < 0.10       | < 0.10       |  | < 0.10      | 28          |
| Aliphatic TPH >C16-C21           | N       | 1675 | 10:1   | µg/l      | 0.10      | < 0.10       | < 0.10       |  | < 0.10      | 350         |
| Aliphatic TPH >C21-C35           | N       | 1675 | 10:1   | µg/l      | 0.10      | < 0.10       | < 0.10       |  | < 0.10      | 3300        |
| Aliphatic TPH >C35-C44           | N       | 1675 | 10:1   | µg/l      | 0.10      | < 0.10       | < 0.10       |  | < 0.10      | < 0.10      |
| Total Aliphatic Hydrocarbons     | N       | 1675 | 10:1   | µg/l      | 5.0       | < 5.0        | < 5.0        |  | < 5.0       | 3700        |
| Aromatic TPH >C5-C7              | N       | 1675 | 10:1   | µg/l      | 0.10      | < 0.10       | < 0.10       |  | < 0.10      | < 0.10      |
| Aromatic TPH >C7-C8              | N       | 1675 | 10:1   | µg/l      | 0.10      | < 0.10       | < 0.10       |  | < 0.10      | < 0.10      |
| Aromatic TPH >C8-C10             | N       | 1675 | 10:1   | µg/l      | 0.10      | < 0.10       | < 0.10       |  | < 0.10      | < 0.10      |
| Aromatic TPH >C10-C12            | N       | 1675 | 10:1   | µg/l      | 0.10      | < 0.10       | < 0.10       |  | < 0.10      | < 0.10      |
| Aromatic TPH >C12-C16            | N       | 1675 | 10:1   | µg/l      | 0.10      | < 0.10       | < 0.10       |  | < 0.10      | < 0.10      |
| Aromatic TPH >C16-C21            | N       | 1675 | 10:1   | µg/l      | 0.10      | < 0.10       | < 0.10       |  | < 0.10      | < 0.10      |
| Aromatic TPH >C21-C35            | N       | 1675 | 10:1   | µg/l      | 0.10      | < 0.10       | < 0.10       |  | < 0.10      | < 0.10      |
| Aromatic TPH >C35-C44            | N       | 1680 | 10:1   | µg/l      | 50.00     | < 50         | < 50         |  | < 50        | < 50        |
| Total Aromatic Hydrocarbons      | N       | 1675 | 10:1   | µg/l      | 5.0       | < 5.0        | < 5.0        |  | < 5.0       | < 5.0       |
| Total Petroleum Hydrocarbons     | N       | 1675 | 10:1   | µg/l      | 10        | < 10         | < 10         |  | < 10        | 3700        |
| Benzene                          | U       | 1760 | 10:1   | µg/l      | 1.0       | < 1.0        | < 1.0        |  | < 1.0       | < 1.0       |
| Toluene                          | U       | 1760 | 10:1   | µg/l      | 1.0       | < 1.0        | < 1.0        |  | < 1.0       | < 1.0       |
| Ethylbenzene                     | Ιu      | 1760 | 10.1   | ua/l      | 1.0       | < 1.0        | < 1.0        |  | < 1.0       | < 1.0       |



# **Results - Leachate**

| Client: Environmental Laboratory |         |      | Che    | mtest J             | ob No.:              | 20-07165     | 20-07165     |  | 20-07165             | 20-07165    |
|----------------------------------|---------|------|--------|---------------------|----------------------|--------------|--------------|--|----------------------|-------------|
| Services Ltd                     |         |      | Chamte | ot Sam              |                      | 091120       | 091101       |  | 001104               | 001125      |
| Quotation No.: Q20-19726         |         |      | Clie   | nt Somr             | pie ID               | 901120       | 901121       |  | 901124<br>176540/005 | 901123      |
|                                  |         |      |        | ni Sanip<br>ont Som |                      | 170540/001   | 176540/002   |  | 176540/005           | 170540/000  |
|                                  |         |      |        |                     |                      |              |              |  |                      |             |
|                                  |         |      | 3      |                     |                      | XC219-CPRC04 | XC219-CPRC04 |  | XC219-CP01           | XC219-CP01  |
|                                  |         |      |        | Jan Do              | e Type.              | 501L         | 301L         |  | 501L                 | 301L        |
|                                  |         |      |        | Deta Sa             | pun (m).<br>Seenladi | 0.05         | 1.00         |  | 0.05                 | 1.00        |
| Determinend                      | Access  | COD  | Turne  | Dale Sa             |                      | 20-Feb-2020  | 20-Feb-2020  |  | 27-Feb-2020          | 28-Feb-2020 |
|                                  | Accrea. | 50P  | 1 ype  | Units               |                      | 110          | - 1.0        |  | - 1.0                | 110         |
| m & p-xylene                     |         | 1760 | 10:1   | µg/i                | 1.0                  | < 1.0        | < 1.0        |  | < 1.0                | < 1.0       |
| o-Xylene                         |         | 1760 | 10:1   | µg/i                | 1.0                  | < 1.0        | < 1.0        |  | < 1.0                | < 1.0       |
|                                  | N       | 1760 | 10:1   | µg/i                | 1.0                  | < 1.0        | < 1.0        |  | < 1.0                | < 1.0       |
| Naphthalene                      | U       | 1800 | 10:1   | µg/l                | 0.10                 | < 0.10       | < 0.10       |  | < 0.10               | < 0.10      |
| Acenaphthylene                   | U       | 1800 | 10:1   | µg/l                | 0.10                 | < 0.10       | < 0.10       |  | < 0.10               | < 0.10      |
| Acenaphthene                     | U       | 1800 | 10:1   | µg/l                | 0.10                 | < 0.10       | < 0.10       |  | < 0.10               | < 0.10      |
| Fluorene                         | U       | 1800 | 10:1   | µg/l                | 0.10                 | < 0.10       | < 0.10       |  | < 0.10               | < 0.10      |
| Phenanthrene                     | U       | 1800 | 10:1   | µg/l                | 0.10                 | < 0.10       | < 0.10       |  | < 0.10               | < 0.10      |
| Anthracene                       | U       | 1800 | 10:1   | µg/l                | 0.10                 | < 0.10       | < 0.10       |  | < 0.10               | < 0.10      |
| Fluoranthene                     | U       | 1800 | 10:1   | µg/l                | 0.10                 | < 0.10       | < 0.10       |  | < 0.10               | < 0.10      |
| Pyrene                           | U       | 1800 | 10:1   | µg/l                | 0.10                 | < 0.10       | < 0.10       |  | < 0.10               | < 0.10      |
| Benzo[a]anthracene               | U       | 1800 | 10:1   | µg/l                | 0.10                 | < 0.10       | < 0.10       |  | < 0.10               | < 0.10      |
| Chrysene                         | U       | 1800 | 10:1   | µg/l                | 0.10                 | < 0.10       | < 0.10       |  | < 0.10               | < 0.10      |
| Benzo[b]fluoranthene             | U       | 1800 | 10:1   | µg/l                | 0.10                 | < 0.10       | < 0.10       |  | < 0.10               | < 0.10      |
| Benzo[k]fluoranthene             | U       | 1800 | 10:1   | µg/l                | 0.10                 | < 0.10       | < 0.10       |  | < 0.10               | < 0.10      |
| Benzo[a]pyrene                   | U       | 1800 | 10:1   | µg/l                | 0.10                 | < 0.10       | < 0.10       |  | < 0.10               | < 0.10      |
| Indeno(1,2,3-c,d)Pyrene          | U       | 1800 | 10:1   | µg/l                | 0.10                 | < 0.10       | < 0.10       |  | < 0.10               | < 0.10      |
| Dibenz(a,h)Anthracene            | U       | 1800 | 10:1   | μg/l                | 0.10                 | < 0.10       | < 0.10       |  | < 0.10               | < 0.10      |
| Benzo[g,h,i]perylene             | U       | 1800 | 10:1   | µg/l                | 0.10                 | < 0.10       | < 0.10       |  | < 0.10               | < 0.10      |
| Total Of 16 PAH's                | U       | 1800 | 10:1   | μg/l                | 2.0                  | < 2.0        | < 2.0        |  | < 2.0                | < 2.0       |



# **Test Methods**

| SOP  | Title                                                                                   | Parameters included                                                                                                                                                                                                                                                            | Method summary                                                                                                                               |
|------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1010 | pH Value of Waters                                                                      | pН                                                                                                                                                                                                                                                                             | pH Meter                                                                                                                                     |
| 1300 | Cyanides & Thiocyanate in<br>Waters                                                     | Free (or easy liberatable) Cyanide; total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                                                                                                             | Continuous Flow Analysis.                                                                                                                    |
| 1450 | Metals in Waters by ICP-MS                                                              | Metals, including: Antimony; Arsenic; Barium;<br>Beryllium; Boron; Cadmium; Chromium; Cobalt;<br>Copper; Lead; Manganese; Mercury;<br>Molybdenum; Nickel; Selenium; Tin; Vanadium;<br>Zinc                                                                                     | Filtration of samples followed by direct<br>determination by inductively coupled plasma<br>mass spectrometry (ICP-MS).                       |
| 1675 | TPH Aliphatic/Aromatic split in<br>Waters by GC-FID(cf. Texas<br>Method 1006 / TPH CWG) | Aliphatics: >C5–C6, >C6–C8, >C8– C10,<br>>C10–C12, >C12–C16, >C16–C21, >C21–<br>C35, >C35– C44Aromatics: >C5–C7, >C7–C8,<br>>C8– C10, >C10–C12, >C12–C16, >C16– C21,<br>>C21– C35, >C35– C44                                                                                   | Pentane extraction / GCxGC FID detection                                                                                                     |
| 1680 | Extractable Petroleum<br>Hydrocarbons                                                   | Aliphatics: >C5–C6, >C6–C8, >C8– C10*,<br>>C10–C12*, >C12–C16*, >C16–C21*, >C21–<br>C35*, >C35– C44Aromatics: >C5–C7, >C7–C8,<br>>C8– C10*, >C10–C12*, >C12–C16*, >C16–<br>C21*, >C21– C35*, >C35– C44                                                                         | Dichloromethane extraction / GCxGC FID<br>detection                                                                                          |
| 1760 | Volatile Organic Compounds<br>(VOCs) in Waters by<br>Headspace GC-MS                    | Volatile organic compounds, including BTEX<br>and halogenated Aliphatic/Aromatics. (cf.<br>USEPA Method 8260)                                                                                                                                                                  | Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds. |
| 1800 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Waters by GC-MS              | Acenaphthene; Acenaphthylene; Anthracene;<br>Benzo[a]Anthracene; Benzo[a]Pyrene;<br>Benzo[b]Fluoranthene; Benzo[ghi]Perylene;<br>Benzo[k]Fluoranthene; Chrysene;<br>Dibenz[ah]Anthracene; Fluoranthene; Fluorene;<br>Indeno[123cd]Pyrene; Naphthalene;<br>Phenanthrene; Pyrene | Pentane extraction / GCMS detection                                                                                                          |
| 2030 | Moisture and Stone Content of<br>Soils(Requirement of<br>MCERTS)                        | Moisture content                                                                                                                                                                                                                                                               | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                         |
| 640  | Characterisation of Waste<br>(Leaching C10)                                             | Waste material including soil, sludges and granular waste                                                                                                                                                                                                                      | ComplianceTest for Leaching of Granular<br>Waste Material and Sludge                                                                         |

The right chemistry to deliver results

### **Report Information**

### Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

### Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to:

customerservices@chemtest.com

Appendix K

**Geophysical Survey Report** 

XC219 Buttevant Level Crossing Co. Cork

# **Geophysical Survey**

Report Status: Final MGX Project Number: 6508 MGX File Ref: 6508f-005.doc 9<sup>th</sup> November 2020

### **Confidential Report To:**

OCB Geotechnical Unit 11 Carrigogna Midleton Co. Cork

#### Report submitted by : Minerex Geophysics Limited

Issued by:

Unit F4, Maynooth Business Campus Maynooth, Co. Kildare, W23X7Y5 Ireland Tel.: 01-6510030 Email: <u>info@mgx.ie</u>

Author: Hartmut Krahn (Senior Geophysicist)

Reviewer: John Connaughton (Geophysicist)



Subsurface Geophysical Investigations

# **EXECUTIVE SUMMARY**

- 1. Minerex Geophysics Ltd. (MGX) carried out a geophysical survey consisting of 2D-Resistivity profiles at the proposed bridge development at the Buttevant Level Crossing XC219, Co Cork.
- 2. The main objectives of the survey were to determine the ground conditions and to check for the presence of karst features and karstified rock.
- 3. The ground model presented here shows clay-rich overburden over karstifiable limestone. The limestone is described as weathered karstified limestone and fresh compact limestone.
- 4. The interpretation shows that the rock quality is generally better and the rock is shallower on the east side of the railway. On the west side the rock is more weathered and karstified and also generally deeper.
- 5. Core holes 6 and 7 were targeted here on the west side where profiles R1 to R4 cross each other. This area seems quite complex, contains the clay-filled cavity found in core hole 3 and also might contain further karst features. The core hole show deep weathered or karstified rock.
- 6. At the eastern end of R6 from 85 to 106 m distance some localised weathered karstified limestone has been interpreted.
- 7. At the end of profiles R3 and R4 (105 m distance) could be the transition to the better limestone interpreted on the eastern side of the railway. Bore hole 8 was done here and it still shows some weathered rock but also generally better RQD values.
- 8. 2D-Resistivity profiles across the railway line could be carried out to image the area close to the railway line and below it
- 9. This final report was reviewed after targeted core hole information became available.

# **CONTENTS**

| 1.  | INTRODUCTION1                    |
|-----|----------------------------------|
| 1.1 | Background1                      |
| 1.2 | Objectives1                      |
| 1.3 | Site Description                 |
| 1.4 | Geology1                         |
| 1.5 | Report                           |
| 2.  | GEOPHYSICAL SURVEY               |
| 2.1 | Methodology                      |
| 2.2 | 2D-Resistivity                   |
| 2.3 | Site Work                        |
| 3.  | RESULTS AND INTERPRETATION       |
| 3.1 | 2D-Resistivity                   |
| 4.  | CONCLUSIONS AND RECOMMENDATIONS7 |
| 5.  | REFERENCES                       |

# List of Tables, Maps and Figures:

| Title                                                            | Pages   | Document Reference |
|------------------------------------------------------------------|---------|--------------------|
|                                                                  |         |                    |
| Table 1: Geophysical Survey Locations and Acquisition Parameters | In text | In text            |
| Table 2: Summary of Interpretation                               | In text | In text            |
|                                                                  |         |                    |
|                                                                  |         |                    |
| Map 1: Geophysical Survey Location Map                           | 1 x A3  | 6508f_MapsFigs.dwg |
|                                                                  |         |                    |
| Figure 1a: Models of Geophysical Survey                          | 1 x A3  | 6508f_MapsFigs.dwg |
| Figure 1a: Models of Geophysical Survey                          | 1 x A3  | 6508f_MapsFigs.dwg |
| Figure 2a: Interpretation of Geophysical Survey                  | 1 x A3  | 6508f_MapsFigs.dwg |
| Figure 2b: Interpretation of Geophysical Survey                  | 1 x A3  | 6508f_MapsFigs.dwg |

### 1. INTRODUCTION

#### 1.1 Background

Minerex Geophysics Ltd. (MGX) carried out a geophysical survey at the XC219 Buttevant Level Crossing as a part of the Cork Line Level Crossings Project. It is proposed to replace the level crossing by a road-overrail bridge. The survey was commissioned by OCB Geotechnical.

The role of geophysics as a non-destructive fast method is to allow later targeted direct investigations. Those results can be used to improve the initial results and interpretation.

The survey was aimed both at investigating the ground conditions and identifying any possible karst features.

Recommendations for targeted borehole were made after the draft report, and the results of targeted boreholes, where they were done, are included in this final report versions.

### 1.2 Objectives

The main objectives of the geophysical survey were:

- To determine the ground conditions under the site
- To detect lateral changes within the geological layers
- To detect possible karst features and karstified rock

### 1.3 Site Description

The site is located at the Level Crossing to the west of Buttevant, Co. Cork. The survey area is on both sides of the railway in relatively level fields. On the east side of the railway is a yard with gravel surface cover, on the west side is a derelict railway station building and a strip of protected vegetation.

#### 1.4 Geology

Several cable percussive and rotary core holes had been carried out before this survey and they describe the geology as gravelly clay over limestone bedrock. The limestone shows sign of karstification, especially at core hole 3 where a clay filled cavity was found. The boreholes are shown on Map 1 and the abbreviated boreholes logs are indicated on the figures.

The bedrock geological map (GSI, 2020) indicates that the site is underlain by the Hazelwood Limestone Formation, described as pale-grey massive mud-grade limestone. This formation is liable to karstification and karst features have been mapped in the general area of Buttevant.

The main fault direction in the area is S to N and WSW to ENE though no fault has been mapped under the site.

### 1.5 Report

This report includes the results and interpretation of the geophysical survey. Maps, figures and tables are included to illustrate the results of the survey. More detailed descriptions of geophysical methods and measurements can be found in GSEG (2002), Milsom (1989) and Reynolds (1997).

The digital map provided by the client was used for reference as the background map (Map 1).

The interpretative nature and the non-invasive survey methods must be taken into account when considering the results of this survey and Minerex Geophysics Limited, while using appropriate practice to execute, interpret and present the data, give no guarantees in relation to the existing subsurface.

### 2. GEOPHYSICAL SURVEY

#### 2.1 Methodology

The methodology was outlined in the tender documents and consisted of 2D-Resistivity profiles on the lines given by the engineers.

The survey locations are indicated on Map 1. The profiles and parameters are tabulated in Table 1 below.

All geophysical surveys are acquired, processed and reported in accordance with British Standards BS 5930:1999 +A2:2010 'Code of Practice for Site Investigations'.

| Profile Name | Electrode Spacing/m | Number of Electrodes | Profile Length/m |
|--------------|---------------------|----------------------|------------------|
| R1           | 3                   | 36                   | 105              |
| R2           | 3                   | 32                   | 93               |
| R3           | 3                   | 41                   | 120              |
| R4           | 3                   | 42                   | 123              |
| R5           | 3                   | 36                   | 105              |
| R6           | 3                   | 43                   | 126              |
| SUM          |                     |                      | 672              |

Table 1: Geophysical Survey Locations and Acquisition Parameters

#### 2.2 2D-Resistivity

2D-Resistivity profiles were surveyed with electrode spacing of 3 m, up to 43 electrodes per set-up and a maximum length of 126 m per profile. The readings were taken with a Tigre Resistivity Meter, Imager Cables, stainless steel electrodes, laptop and ImagerPro acquisition software.

During 2D-Resistivity surveying data is acquired in the form of linear profiles using a suite of metal electrodes. A current is injected into the ground via a pair of electrodes while a potential difference is measured across a second pair of electrodes. This allows for the recording of the apparent resistivity in a two-dimensional arrangement below the profile. The data is inverted after the survey to obtain a model of subsurface resistivities. The generated model resistivity values and their spatial distribution can then be related to typical values for different geological materials.

2D-Resistivity has previously proven zones of anomalous or karstified rock with lateral extents of 5 m and more.

### 2.3 Site Work

The data acquisition was carried out on the 18<sup>th</sup> of June 2020. The weather conditions were variable throughout the acquisition period. Health and safety standards were adhered to at all times. The electrode locations were surveyed with a Carlson NR3 RTK-GPS to accuracy < 0.05 m.

### 3. RESULTS AND INTERPRETATION

The interpretation of geophysical data was carried out utilising the known response of geophysical measurements, typical physical parameters for subsurface features that may underlay the site, and the experience of the authors. The interpretation is based solely on the 2D-Resistivity data as the only method carried out.

Ground investigation results were available and the abbreviated borehole logs are indicated on the sections. Boreholes provide accurate information for specific locations while geophysics provides a broader interpretation over a large volume of ground. The overburden is shown as 'Clay' which is the main component. Rock core descriptions with an RQD value < 65 are abbreviated as 'Weathered Limestone' and better rock with higher RQD values is shown as 'Limestone'.

#### 3.1 2D-Resistivity

The 2D-Resistivity data was positioned and inverted with the RES2DINV inversion package. The programme uses a smoothness constrained least-squares inversion method to produce a 2D model of the subsurface model resistivities from the recorded apparent resistivity values. Three variations of the least squares method are available and for this project the Jacobian Matrix was recalculated for the first three iterations, then a Quasi-Newton approximation was used for subsequent iterations. Each dataset was inverted using seven iterations resulting in a typical RMS error of <3.6%. The resulting models were colour contoured with the same resistivity scale for all profiles and they are displayed as cross sections (Figures 1a and 1b).

Resistivities are characteristic for certain overburden and rock types. If there is a high content of clay minerals (which are electrically conductive) then the overburden resistivity will be lower than if there is a high content of clastic grains like sand or gravel. The purer the clay and the lower the sand/gravel content the lower the resistivity. The water content in the overburden also influences the resistivities but generally the clay content has a larger effect.

Karstified rock is defined in this report as a formerly intact clean limestone rock, liable to karstification, that has been partially dissolved by water over long geological time scales and where the cavities and voids have either remained empty (filled by air) or became filled by overburden sediment (clay, silt, sand), weathering product of the broken rock itself or water. This process would lead to a reduction of the resistivity of the overall rock and therefore karstified rock has a lower resistivity than intact clean limestone rock. This is generally indicated by lower resistivities embedded within high resistivity at depth. Only air-filled cavities would have a higher resistivity than the limestone itself.

Water strikes in the bore holes were generally between 2 and 4 m bgl therefore water levels are expected above the rock or close to the top of the rock. This means that open cavities within the rock would be filled

with water rather than air. This would result in a reduction of resistivities within water-filled cavities while an air-filled cavity would increase the resistivity.

The bedrock resistivities on this site are generally high, indicating that the limestone is liable to karstification. Karstified rock is typically identified by low resistivities within a high resistivity limestone bedrock.

The resistivities cover a range typical for materials from clay rich overburden to fresh compact unweathered limestone (high resistivities). The ranges and gradients have been taken into consideration for the interpretation. Low resistivity values (<250 to 500 Ohmm) and a shallow gradient typically indicate overburden with high clay content. Lower values at depth (< 1000 Ohmm) show weathered karstified bedrock. High resistivities (>1000 Ohmm) indicate fresh compact limestone.

The primary purpose of the resistivity survey is to propose targeted core holes. The interpretation below is done by following roughly criteria like resistivities and gradients, but the interpretation does not represent an exact ground condition. 2D-Resistivity only measures one parameter of the subsurface while some materials such as gravelly clay in overburden and a mix of rock and clay in weathered karstified rock can have the similar resistivities. Changes in the subsurface geology oblique to the direction of a profile leads to a "3D" result on a 2D model. This can be seen by contradictions in intersecting profiles. The fit between R5 and R6 on the eastern side of the railway is good which indicates little change in the geology around the profiles as well as across them, while the differences at the crossing on the western side show more geological complexity which is considered during the interpretation.

The 2D-Resistivity survey shows generally unweathered fresh limestone to the east of the railway with some exceptions such as an area near the end of Profile R6, while lower resistivities at depth to the west of the railway bridge, particularly at the start of profiles R1, R3 and R4 indicate a more weathered, karstified limestone. Figures 2a and 2b show an interpretation based solely on the 2D-Resistivity survey. Additional geotechnical locations are proposed on the maps and figures and are concentrated on areas where karstified rock may be present. Boreholes 4 and 5 show fresh limestone within the high resistivity area and it would be anticipated that additional borehole within the high resistivity areas would produce similar results.

| Layer | General Resistivity Range (Ohmm) | Interpretation                 |
|-------|----------------------------------|--------------------------------|
| 4     | 250 to 500 and gradient          |                                |
|       |                                  |                                |
| 2     | < 1000                           | Weathered karstified Limestone |
| 3     | >1000                            | Fresh compact Limestone        |

Table 2: Summary of Interpretation

### 4. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are made:

- The geophysical survey indicates clay-rich overburden over karstifiable limestone.
- The depth to rock is generally shallower on the east side of the railway than on the west side.
- Resistivities within the limestone indicate more karstification and weathering on the west side of the railway and a generally better rock on the eastern side.
- The area where profiles R1 to R4 cross each other seems to be the most geologically complex and disturbed area. This is where core hole 3 has found a clay-filled cavity from 9.90 to 11.3 m depth. This was not directly detected by the resistivity profiles but it is expected that more similar karst features exist in this area. Core holes 6 and 7 were targeted here and indicate deep weathered bedrock which could be also described as karstified rock.
- On profile R6 at the eastern end from 85 to 106 m distance low resistivity indicates weathered karstified rock and a core hole was recommended here in the draft report.
- There is an increase to high resistivities at the end of profiles R3 and R4 (105 m distance) and this could show the transition to the better limestone interpreted on the eastern side of the railway. Bore hole 8 was done here and it still shows some weathered rock but also generally better RQD values.
- It is recommended to carry out 2D-Resistivity profiles across the railway line. By feeding the resistivity cables under the rails this can be done while maintaining the train schedule and with only one person accessing the railway line.
- This final report version was reviewed after some targeted boreholes were carried out.

### 5. **REFERENCES**

- 1. **GSEG 2002.** Geophysics in Engineering Investigations. Geological Society Engineering Geology Special Publication 19, London, 2002.
- 2. **GSI, 2020.** Online Bedrock Geological Map of Ireland. Geological Survey of Ireland 2019.
- 3. Milsom, 1989. Field Geophysics. John Wiley and Sons.
- 4. **Reynolds**, **1997.** An Introduction to Applied and Environmental Geophysics. John Wiley and Son.











Appendix L Pre & Post Site Condition Photographs
















